

Search for dark sector physics at proton-beam experiments

Xiaoyong Chu

(HEPHY, Vienna)

Next Frontiers in the Search for Dark Matter

Sep 23, 2019 - Sep 27, 2019

The Galileo Galilei Institute For Theoretical Physics

Outlines

- Part I: What is the dark sector physics?
- Part II: Experimental signatures of dark sector physics in proton-beam experiments
- Part III: Summary

I. Dark sector physics

Motivations for a dark sector:

Primary goal: to find dark matter particles, or a portal to them;

Coupling to SM

Motivations for a dark sector:

Primary goal: to find dark matter particles, or a portal to them;

More motivations:

E.g. light dark physics helps to solve long-standing puzzles:

Self-interacting dark matter

[Spergel & Steinhardt, 1999]

Core-cusp problem in halo center;

- Heavier halos missing (too-big-to fail);
- Unexpected diversity in halo profiles,...

Massive A' for measured muonic g-2

$$\Delta a_{\mu} \equiv a_{\mu}^{exp} - a_{\mu}^{th} = (274 \pm 73) \times 10^{-11}$$

MeV-GeV massive dark photon with

$$\epsilon \sim 10^{-3} - 10^{-2}$$

Also, cosmic ray excesses, strong CP, theoretical hidden valleys, ...

Proton-beam experiments probe dark sector

Proton-beam experiments probe dark sector

Pros:

 Very high intensity [Batell, Pospelov & Ritz 0906.5614, ...]

Luminosity from proton on target (POT)

$$10^{20} \, \mathrm{POT} \times \frac{\mathrm{kg/cm^2}}{\mathrm{GeV}} \sim 10^{23} \mathrm{barn^{-1}}$$

Luminosity at colliders

$$1ab^{-1} = 10^{18} barn^{-1}$$

and antiproton

Pic from Jason St-Hilaire

Slowly moving,

very heavy particles

Proton-beam experiments probe dark sector

Pros:

 Very high intensity [Batell, Pospelov & Ritz 0906.5614, ...]

Luminosity from proton on target (POT)

$$10^{20} \, \mathrm{POT} \times \frac{\mathrm{kg/cm^2}}{\mathrm{GeV}} \sim 10^{23} \mathrm{barn^{-1}}$$

Luminosity at colliders

$$1ab^{-1} = 10^{18} barn^{-1}$$

Some existing/well-understood
 experiments (bkgs, efficiencies, ...);

Colliding proton

and antiproton

Pic from Jason St-Hilaire

Possible result:

Slowly moving,

very heavy particles

Cons:

- Difficult to reduce neutrino backgrounds;
- · Difficult for missing energy searches;

II. Experimental signatures of dark sector (DS) particles

Signatures of dark sector physics

Minimally-coupled Portal

[Apologies for not being able to mentioning more models and references..]

Signatures of dark sector physics

II.A (In)elastic scattering excess

(CHARM, SHiP, MilliQan, ..., as well as neutrino experiments such as LSND, MiniBooNE, T2K, COHERENT, DUNE, SBND,)

Kinetic mixing via A'-portal

$$-\frac{\epsilon}{4}F_{\mu\nu}F^{\prime\mu\nu} + igA_{\mu}^{\prime}(\bar{\chi}\gamma^{\mu}\chi)$$

It greatly enriches dark matter physics, such as various production

mechanisms [XC, T.Hambye, M.Tytgat 2011, XC, Y. Mambrini, J.Quevillon, B.Zaldivar 2013, C.Dvorkin, T.Lin,

K.Schutz 2019, T.Hambye, M.Tytgat, J.Vandecasteele, L.Vanderheyden 2019, J. Evans, C.Gaidau, J. Shelton 2019,....],

If A' dominantly couples to light dark pairs or $m_{A^\prime} < 2 m_e$, it decays **invisibly**:

Electron-beam experiments search for missing energy/momentum:

- Parton collisions via pp→DS pair (DY);
- Proton Bremsstrahlung via pp→pp'+DS pair;
- Secondary production via meson decay
 (possible double-counting e.g. conversion of vector meson to dark photon);
- Secondary collisions by produced electron/ photon/pion/etc. (interesting for quark-phobic states).

Production

- Parton collisions via pp→DS pair (DY);
- Proton Bremsstrahlung via pp→pp'+DS pair;
- Secondary production via meson decay
 (possible double-counting e.g. conversion of vector meson to dark photon);
- Secondary collisions by produced electron/ photon/pion/etc. (interesting for quark-phobic states).

A illustration from [deNiverville, Chen, Pospelov &Ritz 1609.01770]

Proton beam experiments

After (On/off-shell) portal appears, then decays

Proton hitting fixed target

After (On/off-shell) portal appears, then decays Shield

Detection

- Electron/nucleon recoils (Elastic);
- Single-pion scattering (RES);
- Deep inelastic scattering (DIS)
- Coherent scattering effects, ...

Backgrounds (mostly neutrino induced):

Take MiniBooNE on-target mode:

visible energy $75 \le E_{\text{vis}}^e \, (\text{MeV}) \le 850$ reconstructed angle $\cos \theta_e \geq 0.99$

8 GeV beam with $1.3 \times 10^{21} \, \mathrm{POT}$

Predicted single-e bkgs

~ 100 events [MiniBooNE 1211.2258]

Much fewer than nucleon recoils, but still a lot.

Backgrounds (mostly neutrino induced):

Take MiniBooNE on-target mode:

Predicted single-e bkgs

8 GeV beam with $1.3 \times 10^{21} \, \mathrm{POT}$

visible energy $75 \le E_{\text{vis}}^e \, (\text{MeV}) \le 850$ reconstructed angle $\cos \theta_e \ge 0.99$

~ 100 events [MiniBooNE 1211.2258]

Much fewer than nucleon recoils, but still a lot.

Backgrounds (mostly neutrino induced):

To reduce neutrino backgrounds:

- Off-axis detector: dark particles usually have a much wider beam;
 - Especially for heavy dark particles, different from neutrinos (charged mesons focused by magnets & two-body decay); [Coloma, Dobrescu, Frugiuele & Harnik 1512.03852, Frugiuele 1701.05464, deNiverville & Frugiuele 1807.06501, Gouvêa, Fox, Harnik, Kelly & Zhang 1809.06388,...]

$$m_{A'} \gg 2m_{\chi}$$

To reduce neutrino backgrounds:

- Off-axis detector: dark particles usually have a much wider beam;
 - Especially for heavy dark particles, different from neutrinos (charged mesons focused by magnets & two-body decay); [Coloma, Dobrescu, Frugiuele & Harnik 1512.03852, Frugiuele 1701.05464, deNiverville & Frugiuele 1807.06501, Gouvêa, Fox, Harnik, Kelly & Zhang 1809.06388,...]

$$m_{A'} \leq 2m_{\chi}$$

To reduce neutrino backgrounds:

- Off-axis detector: dark particles usually have a much wider beam;
 - Especially for **heavy dark particles**, different from neutrinos (charged mesons focused by magnets & two-body decay); [Coloma, Dobrescu, Frugiuele & Harnik 1512.03852, Frugiuele 1701.05464, deNiverville & Frugiuele 1807.06501, Gouvêa, Fox, Harnik, Kelly & Zhang 1809.06388,...]
- Timing cut: massive dark particles take longer to reach the far detector;
 - E.g. Super-K gives ns µs delay [deNiverville, Chen, Pospelov & Ritz 1609.01770], ...;
- Kinetic cut on the SM particle scattered by massive dark particle;
 - E.g. MiniBooNE-DM, DIS,

Interestingly, if A' is massless, one can always define the **2 d.o.f.** coupled to QED current as **the SM photon**, so A' does not couple to SM charged particles:

Produce milli-charged dark particles directly in proton beam!

[Haas, Hill, Izaguirre & Yavin 1410.6816, Magill, Plestid, Pospelov & Tsai 1806.03310, Kelly & Tsai 1812.03998, KeHarnik, Liu & Palamara 1902.03246, Romer, Kelly & Machado 1903.10505...]

To distinguish **soft dark collisions** from backgrounds:

Triple coincidence with only low recoils in three scintillation detectors;

e.g. MilliQan [Ball, Brooke et al. 1607.04669], FerMINI array [Kelly & Tsai 1812.03998], ...;

In contrast, if portal particle decays visibly to SM particles:

Displaced vertices (with little backgrounds)!

II.B Displaced vertices

(CMS/ATLAS/LHCb, SHiP, MATHUSLA, FASER, CODEX-b, SeaQuest, NA62,)

away from the primary vertex

Decay-at-flight

$$L_d \sim \left(\frac{10^{-6}}{\epsilon}\right)^2 \left(\frac{0.1 \,\mathrm{GeV}}{m_{A'}}\right)^2 \left(\frac{E_{A'}}{\mathrm{TeV}}\right) \,\mathrm{meter}$$

Emerging in a long detector

If to SM: displaced vertices

Decay-at-flight

$$L_d \sim \left(\frac{10^{-6}}{\epsilon}\right)^2 \left(\frac{0.1 \,\mathrm{GeV}}{m_{A'}}\right)^2 \left(\frac{E_{A'}}{\mathrm{TeV}}\right) \,\mathrm{meter}$$

Backgrounds:

- Inelastic scatterings induced by beamrelated (or cosmic) muons/neutrinos;
- Their coincident combinations.

Nearly no backgrounds after reconstruction veto.

Nearly no backgrounds after reconstruction veto.

Neutrino-portal for proton-beam experiments

Neutrino Minimal Standard Model

[Asaka & Shaposhnikov 2005]

Three right-handed neutrinos with majorana masses: seesaw

 N_1 of keV scale

 $N_{2,3}$ of GeV scale

Tiny mixing with SM neutrino

CP-violating oscillation
"out-of-equilibrium"

[Akhmedov, Rubakov & Smirnov, 1998]

Dark matter

Baryonic asymmetry

$$t_N \sim 10^{-5} - 0.1 \,\mathrm{sec}$$

Neutrino-portal for proton-beam experiments

Neutrino Minimal Standard Model

[Asaka & Shaposhnikov 2005]

Three right-handed neutrinos with majorana masses: seesaw

 N_1 of keV scale

 $N_{2,3}$ of GeV scale

Tiny mixing with SM neutrino

CP-violating oscillation
"out-of-equilibrium"

[Akhmedov, Rubakov & Smirnov, 1998]

Dark matter

Baryonic asymmetry

E.g. take muon neutrino mixing:

$$t_N \sim 10^{-5} - 0.1 \,\mathrm{sec}$$

In a long detector

[Alimena, Beacham et al. 1903.04497]

Neutrino-portal for proton-beam experiments

[Alimena, Beacham et al. 1903.04497]

More exotic signatures

Complicated displaced vertex;

- A composite decay [An, Echenard, Pospelov & Zhang, 1510.05020, ...];
- A QCD shower [e.g. a dark portal to QCD],

More exotic signatures

Complicated displaced vertex;

- A composite decay [An, Echenard, Pospelov & Zhang, 1510.05020, ...];
- A QCD shower [e.g. a dark portal to QCD],

Displaced vertex in neutrino experiments;

- Using large LAr time-projection chambers: good reconstruction of 3D particle tracks;
- E.g. HNL \rightarrow v $\ell^+\ell^-$, $\rightarrow \pi^{\pm}\ell^{\mp}$, \rightarrow v γ , and so on [Ballett, Pascoli & Ross-Lonergan 1610.08512, ...];

More exotic signatures

Complicated displaced vertex;

- A composite decay [An, Echenard, Pospelov & Zhang, 1510.05020, ...];
- A QCD shower [e.g. a dark portal to QCD],

Displaced vertex in neutrino experiments;

- Using large LAr time-projection chambers: good reconstruction of 3D particle tracks;
- E.g. HNL \rightarrow v $\ell^+\ell^-$, $\rightarrow \pi^{\pm}l^{\mp}$, \rightarrow v γ , and so on [Ballett, Pascoli & Ross-Lonergan 1610.08512, ...];

Combining scattering and displaced vertex:

- Up-scattering [Kim, Park & Shin 1612.06867,],
- · Dark trident [Gouvêa, Fox, Harnik, Kelly & Zhang 1809.06388, ...].

III. Summary

Summary

- A dark sector may contain dark matter and its interaction structures.
- Proton-beam experiments suitable for feebly-coupled light dark particles, complementary to high-energy colliders:
 - (in)elastic scatterings: naively coupling of $10^{-2} 10^{-5}$;
 - <u>displaced vertices</u>: naively coupling of $10^{-4} 10^{-7}$.
- What new search strategies can be?
 - To further reduce neutrino backgrounds;
 - To search for quark-phobic / neutrino-philic dark particles, ...

Proton beam experiments (scatter v.s. displaced)

- 1. **CERN** (400GeV SPS: **CHARM**, **NA62**, **SHiP**, ...);
- 2. LHC (13TeV: MilliQan, MoEDAL, MATHUSLA, FASER, ...);
- 3. FermiLab (120GeV NuMI: SeaQuest, Minos, DUNE, ...);
- 4. FermiLab (p=8GeV Booster: MiniBooNE, SBND, ...);
- 5. **J-PARC** (30GeV: **T2K**, **JSNS**², **Super-K**...);
- 6. Las Alamos (p=0.8GeV: LSND);
- 7. COHERENT, CODEX-b, etc.

Details of experiments

	N >	$N \times 10^{20} A_{\text{geo}}(m_{\chi})[\times 10^{-3}]$		Cuts [MeV]			
Exp.	π^0	η	1 MeV	$100~{ m MeV}$	E_e^{\min}	E_e^{\max}	Bkg
LSND	130		20		18	52	300
mBooNE	17	0.56	1.2	0.68	130	530	2K
mBooNE*	1.3	0.04	1.2	0.68	18		0*
$\mu \mathrm{BooNE}$	9.2	0.31	0.09	0.05	0.8	40	16
SBND	4.6	0.15	4.6	2.6	0.8	40	240
DUNE	830	16	3.3	5.1	2	40	19K
SHiP	4.7	0.11	130	220	2000	20000	300

[1806.03310]

Details of experiments

[CERN-PBC-REPOR	Target and hadron absor	Muon shield ber	Note that the second se	~12m Particle ID Decay spectrometer ume
SHiP	ALPs, Dark Photons, Dark Scalars	BDF, SPS	$400~{ m GeV}~p$	$2 \cdot 10^{20} / 5 \text{ years}$
	LDM, HNLs, lepto-phobic DM,			
$NA62^{++}$	ALPs, Dark Photons,	K12, SPS	400 GeV p	up to $3 \cdot 10^{18}$ /year
	Dark Scalars, HNLs			
NA64 ⁺⁺	ALPs, Dark Photons,	H4, SPS	$100~{\rm GeV}~e^-$	$5 \cdot 10^{12} \text{ eot/year}$
	Dark Scalars, LDM			
	$+$ $L_{\mu}-L_{ au}$	M2, SPS	160 GeV μ	$10^{12} - 10^{13} \text{ mot/year}$
	+ CP, CPT, leptophobic DM	H2-H8, T9	$\sim 40 \; { m GeV} \; \pi, K, p$	$5 \cdot 10^{12}/\mathrm{year}$
LDMX	Dark Photon, LDM, ALPs,	eSPS	8 (SLAC) -16 (eSPS) GeV e^-	$10^{16} - 10^{18}$ eot/year
AWAKE/NA64	Dark Photon	AWAKE beam	$30\text{-}50~\mathrm{GeV}~e^-$	10^{16} eot/year
RedTop	Dark Photon, Dark scalar, ALPs	CERN PS	1.8 or 3.5 GeV	10^{17} pot
MATHUSLA200	weak-scale LLPs, Dark Scalar,	ATLAS or CMS IP	$14 { m TeV} p$	$3000 \mathrm{fb^{-1}}$
	Dark Photon, ALPs, HNLs			
FASER	Dark Photon, Dark Scalar, ALPs,	ATLAS IP	$14 { m TeV} p$	3000 fb^{-1}
	HNLs, $B-L$ gauge bosons			
MilliQan	milli charge	CMS IP	14 TeV p	$300\text{-}3000~{\rm fb^{-1}}$
CODEX-b	Dark Scalar, HNLs, ALPs,	LHCb IP	14 TeV p	$300 \; { m fb^{-1}}$
	LDM, Higgs decays			

LATTPC (in DUNE, ICARUS, MicroBooNE, SBND):

- 1. Electric/magnetic fields together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particle trajectory in nuclear emulsion *by ionization*.
- 2. detecting recoil of proton above tens of MeV, leading to separation between sub-GeV neutrinos and antineutrinos, since the former is more likely to kick out a proton from Argon.
- 3. Solve MiniBooNE misidentified photon.

Displaced vertices

FIG. 2. Schematic drawings of a timing layer at CMS (top-left), MATHUSLA (top-right), CODEX-b (bottom-left), and FASER (bottom-right), along with their locations with respect to the LHC ring. The red shaded region indicates the decay volume for each experiment.

[Berlin & Kling1810.01879]

Displaced vertices

[Alimena, Beacham et al. 1903.04497]

 m_{ϕ} [GeV]

m_N [GeV]