Fermionic DM absorption

1905.12635: with Gilly Elor, Robert McGehee 1908.10861: with Gilly Elor, Robert McGehee

191x.xxxxx: with Gilly Elor, Robert McGehee, Tien-Tien Yu

Signals vs Models

Time for a debate...

Signals vs Models

Time for a debate...

Signals vs Models

Time for a debate...

This talk: signal approach

Direct detection searches

Types of searches

Elastic scattering

 $\begin{array}{c} {\rm WIMPs} \\ \chi \ {\rm freeze-in} \end{array}$

Progress getting expensive

Xenon1T $\sim \$10^7$ DARWIN $\sim \$10^8$

- \circ About to hit ν floor
- o Different signals?
 - ⇒ big gain/small cost

Bosonic absorption

dark photon axion-like particle

Elastic scattering

 \circ Elastic scattering (T = n, e);

- Conserves DM-number (stable)
- o Target recoil energy:

$$E_R = \frac{\mu^2}{2m_T}v^2$$

 $\circ f(v) \sim e^{-v^2/v_0^2}$

Bosonic absorption

Absorption of bosonic dark matter

- \circ Recoil energy: $E_R \simeq m_\chi$
- \circ Lighter DM (by $\sim v^2$)
- DM is inherently unstable

$$A' \to \gamma \gamma \gamma$$
$$a \to \gamma \gamma$$

 \circ Metastable for $m_\chi \lesssim {
m MeV}$

Fermionic absorption

Mass range:

Neutral current processes

Operators of the form,

$$\frac{1}{\Lambda^2} \left[\bar{\chi} \Gamma_i \nu \right] \, \left[\bar{T} \Gamma_j T \right]$$

Neutrino carries away most of energy:

$$E_{\nu} \sim m_{\chi}$$
 $E_T' \sim m_{\chi}^2/2m_T$

Look for (smaller) nuclear recoil:

$$m_{\chi} \sim \text{MeV}, m_T \sim 10 \text{ GeV} \Rightarrow E_T' \sim 0.1 \text{ keV}$$

O Related ideas: [Kile, Soni - 0908.3892] [Graham, Harnik, Rajendran, Saraswat - 1004.0937]

Features

\circ Elastic scattering (CaWO₄):

Features

o Peak at $E_R \sim m_\chi^2/2m_T$, width $\Delta E_R/E_R \sim 10^{-3}$

Features

 \circ Peak at $E_R \sim m_\chi^2/2m_T$, width $\Delta E_R/E_R \sim 10^{-3}$

No neutrino floor

Occupied control of the control o

[Essig, Kuflik, McDermott, Volansky, Zurek - 1309.4091]

Occupied control of the control o

$$\chi \to \nu \gamma$$
 $\bar{\chi} F_{\mu\nu} \sigma^{\mu\nu} \nu$ \leftarrow often zero
$$\chi \to \nu \nu \nu$$
 $[\bar{\chi} \Gamma_i \nu] [\bar{\nu} \Gamma_j \nu] \leftarrow$ can vanish to $\mathcal{O}(\Lambda^{-4})$

[Gong, Chen - 0802.2296]

Occupiete models will have decays:

$$\chi \to \nu \gamma$$
 $\bar{\chi} F_{\mu\nu} \sigma^{\mu\nu} \nu$ \leftarrow often zero
$$\chi \to \nu \nu \nu \qquad [\bar{\chi} \Gamma_i \nu] [\bar{\nu} \Gamma_j \nu] \leftarrow \text{can vanish to } \mathcal{O}(\Lambda^{-4})$$

$$\chi \to e^+ e^- \nu \qquad [\bar{\chi} \Gamma_i \nu] [\bar{e} \Gamma_j e] \qquad \leftarrow \text{loop induced}$$

$$\chi \to e^+ e^- \nu \qquad [\bar{\chi} \Gamma_i \nu] [\bar{e} \Gamma_j e] \qquad \leftarrow \text{loop induced}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^+ e^- + \text{FSR}$$

$$\chi \to e^+ e^- \nu \qquad \chi \to e^- + \text{FSR}$$

$$\chi \to e^- + \text{FSR}$$

Occupied control of the control o

O Complete models will have decays:

$$\begin{array}{lll} \chi \to \nu \gamma & \bar{\chi} F_{\mu\nu} \sigma^{\mu\nu} \nu & \leftarrow \text{ often zero} \\ \\ \chi \to \nu \nu \nu & \left[\bar{\chi} \Gamma_i \nu \right] \left[\bar{\nu} \Gamma_j \nu \right] & \leftarrow \text{ can vanish to } \mathcal{O}(\Lambda^{-4}) \\ \\ \chi \to e^+ e^- \nu & \left[\bar{\chi} \Gamma_i \nu \right] \left[\bar{e} \Gamma_j e \right] & \leftarrow \text{ loop induced} \\ \\ \chi \to \nu \gamma \gamma & \left[\bar{\chi} \Gamma \nu \right] F_{\mu\nu} F^{\mu\nu} & \leftarrow \text{ loop induced} \\ \\ \chi \to \nu \gamma \gamma \gamma & \left[\bar{\chi} \Gamma \nu \right] F_{\mu\nu} F^{\nu\alpha} F_{\alpha}^{\mu} + \dots & \leftarrow \text{ small} \end{array}$$

• Projected sensitivity ($\sigma_{\rm NC} \equiv m_{_Y}^2/4\pi\Lambda^4$)

• Lithium target (⁶Li and ⁷Li)

Larger experiments

Hydrogen target

- Current experiments-larger thresholds
- \circ Need $m_{\chi} \gtrsim \mathrm{MeV}$
- Tune away decays?

Charged current processes

Operators of the form,

$$\frac{1}{\Lambda^2} \left[\bar{\chi} \Gamma_i e \right] \left[\bar{n} \Gamma_j p \right]$$

 \circ Induce a β^- or β^+ decay in a nucleus:

$$\chi + n \rightarrow p + e^{-} \Rightarrow \chi + {}_{Z}^{A}N \rightarrow {}_{Z+1}^{A}N + e^{-}$$

 $\bar{\chi} + p \rightarrow n + e^{+} \Rightarrow \chi + {}_{Z}^{A}N \rightarrow {}_{Z-1}^{A}N + e^{+}$

- $\circ \ e^{\pm}$ gets most of χ energy
- $\circ \beta^-$ transition allowed if,

$$m_{\chi} > m_{\rm th} \equiv M_{A,Z+1} + m_e - M_{A,Z}$$

 β^+ on Hydrogen: [Kile, Soni - 0908.3892]

Sterile ν : [Lasserre et al - 1609.04671]

- O Best transition in SM: $^{163}_{66}$ Dy $\rightarrow ^{163}_{67}$ HO (2.6keV)
- O Thresholds in known experiments:

Compute rate

• Rate analogous to neutrino scattering:

$$R \sim N_T \frac{\rho_{\chi}}{m_{\chi}} F(Z, E) \sigma_{\chi n \to p\nu}$$

Coulomb enhancement

Focus on stable isotopes

O Multiple detection opportunities:

Multiple detection opportunities:

Shoot off electron + nuclear recoil

Multiple detection opportunities:

Multiple detection opportunities:

- Same decays as neutral current
 - $0 \chi \rightarrow \nu \gamma$
 - $0 \chi \rightarrow \nu \nu \nu$
 - $\circ \chi \to \nu e^+ e^-$
 - $0 \chi \rightarrow \nu \gamma \gamma$
 - $\circ \chi \to \nu \gamma \gamma \gamma \dots$
- \circ Can all be suppressed by additional m_W^2 or Λ^2

Current experiments probe un-tuned parameter space!

Direct constraints

- LHC: $\Lambda \gtrsim 3 \text{ TeV}$
- \circ β decay test of V-A structure: $(\bar{\nu}\Gamma e)(\bar{n}\Gamma p)$

- $\,\circ\,$ Fermion absorption: no interference $\left(\mathcal{O}(G_F^{-2}\Lambda^{-4})\text{ vs }\mathcal{O}(G_F^{-1}\Lambda^{-2})\right)$
- \circ Constraints satisfied if $\Lambda \gtrsim {
 m TeV}$

Projected sensitivity

Direct detection

 $\circ 0\nu2\beta$

Neutrino monsters

 \circ Alternative: β^+ decay

$$\bar{\chi} + p \rightarrow n + e^+$$

- May be only signal (asymmetric DM)
- Rate suppressed in heavy elements

2) Columb repulsion

Focus on Hydrogen targets (Borexino, SuperK)

O Projections from neutrino experiments:

Modifying kinematic endpoint

- \circ Can also have DM altered β^{\pm} spectra
- Tritium popular transition ${}^{3}_{1}H \rightarrow {}^{3}_{2}He + e^{-} + \nu$

$${}_{1}^{3}\text{H} \rightarrow {}_{2}^{3}\text{He} + e^{-} + \nu$$

- \circ Small experiments (typically \sim gram)
- PTOLEMY (100 gram)

O Projections... need some optimism

Simple question...

Can fermions be absorbed in DM experiments?

Thanks!

Relation to sterile neutrinos

Decay

- Fermion absorption can occur for "classic" sterile neutrinos
- \circ Only interaction through mixing: $(\mathcal{L} \supset (s_{\theta}m_s)\nu_s\nu)$

is

related

Direct detection

 v_s v, e W, Z N'

Discovery observations of the state of the s

Dark matter mass Mpw [keV]

[lots of people - 1602.04816]

to

$$\Lambda^2 \simeq m_W^2/s_\theta \gtrsim (100 \text{ TeV})^2$$
 (hard)

o UV completion: U(1) broken at a TeV ($m_{Z'}={
m TeV}$)

$$\mathcal{L} \supset g_X \left(\frac{1}{3} \sum_{q \in u, d} Q_q \bar{q} \gamma_\mu q + Q_\chi \bar{\chi} \gamma_\mu \chi \right) Z'^\mu$$

- \circ "Protophobic" $Q_u=-1/3$, $Q_d=2/3$
- \circ Integrating out Z':

$$\mathcal{L} \supset rac{g_X^2 Q_q Q_\chi}{m_{Z'}^2} ar{n} \gamma^\mu n ar{\chi} \gamma_\mu \chi$$

So far model only has elastic scattering

 \circ Now suppose we have some mixing between χ and ν :

$$\mathcal{L} \supset H(y\bar{\nu} + y'\bar{\chi}) P_L \ell + m\bar{\chi} P_R \nu + m'\bar{\chi}\chi$$

O Mixing between states:

$$heta_R \simeq -rac{m}{m'}\,, \quad {
m and} \quad heta_L \simeq -rac{y'v}{m'}$$

 \circ Set mixing between left handed states to be small $(y' \to 0)$:

$$\mathcal{L} \supset \frac{g_X^2 Q_q Q_\chi s_{\theta_R}}{m_{Z'}^2} \bar{n} \gamma_\mu n \, \bar{\chi} \gamma_\mu P_R \nu + \text{h.c.}$$

- \circ Additional interactions induce $\chi \to 3\nu$
- $\circ \Gamma_{\chi \to 3\nu} \varpropto s_{\theta_R}^6 \Rightarrow \text{ easy to suppress}$

- \circ Consider hypercharged, SU(2)-singlet, scalar, ϕ^{\pm} (Y=1)
- O It can have interactions:

$$\mathcal{L} \supset g_X \left(Q_e \phi^- \bar{\chi} P_R e + \phi^- Q_q \bar{u} P_R d \right)$$

Integrating out scalar:

$$\mathcal{L} \supset \frac{g_X^2 Q_e Q_q}{m_\phi^2} \bar{\chi} P_R e \bar{u} P_R d$$

Leading decay:

Electron scattering

- $\circ \chi e \rightarrow \nu e$: natural place to look for fermion absorption
- $\circ E_e \sim m_\chi^2/m_e$
- \circ keV DM $\Rightarrow E_e \sim eV$
- Reach Tremaine-Gunn!
- O Decays are suppressed (no $\chi \to e^+ e^- \nu$, small m)
- Only have $\chi \to \nu \gamma, \nu \gamma \gamma, 3\nu, ...$

- O Direct detection: Hard to compute
- Future work...

Indirect detetion

- Rich indirect detection signatures
- Decays always present
- Excess of events in baryon rich regions
- O CMB constraints:

$$n_{\chi} n_{b} \langle \sigma v \rangle_{\chi n \to ep} \simeq n_{\chi}^{2} \langle \sigma v \rangle_{\chi \chi \to e^{+}e^{-}}$$

$$\Rightarrow \langle \sigma v \rangle_{\chi n \to ep} = \frac{\Omega_{b}}{\Omega_{\chi}} \frac{m_{p}}{m_{\chi}} \langle \sigma v \rangle_{\chi \chi \to e^{+}e^{-}}$$

$$= 2 \times 10^{-38} \text{cm}^{2}$$

- (much larger than our parameter space)
- O Can you do better with specialized indirect detection?