Implications of Noether's Theorem at Galactic Scales

Susan Gardner

Department of Physics and Astronomy
University of Kentucky
Lexington, KY

> SG, Austin Hinkel (U. Kentucky), Brian Yanny (Fermilab), "Applying Noether's theorem to matter in the Milky Way: evidence for external perturbations and non-steady-state effects from Gaia Data Release 2," submitted to ApJ
> "'Next Frontiers in the Search for DM"
> GGI Institute, Arcetri, Florence September 23, 2019

Perspective

The matter of a isolated galaxy in steady state has a distribution function (DF) controlled by its integrals of motion - in an axially symmetric galaxy E and L_{z} should be integrals of motion [Jeans, 2015; Binney \& Tremaine, 2008] In our galaxy, the stellar relaxation time exceeds the age of the Universe - and we can neglect stellar collisions to model the stars as a continuous mass distribution
Thus enters the DF, and its continuous symmetries.
Noether's theorem tells us that for each variational symmetry of an action there is an associated conservation law [Noether, 19r8]
Here we test the symmetry to probe the conservation law.

Theory Framework

Here we test axial symmetry of out-of-plane Milky Way stars to probe L_{z} as an integral of motion
[Noether, i918; Olver, 1993]
An axially symmetric galaxy in steady-state must also be north-south reflection symmetric
[An et al., 2017; note also Schulz et al., 2013]
If axial symmetry is broken, non-isolating and possibly time-dependent forces must be at work But a north-south symmetry-breaking pattern speaks to non-steady-state effects, both in and on the Milky Way Thus studying axial symmetry breaking, north and south, can separate non-isolating from non-steady-state effects

Gaia Data Release (DR2) Data

 Select a North/South/Left/Right matched sample - Choose stars with measured parallaxes [Lindegren et al., 2018] - Apply +0.07 mas parallax offset to parallax p \& then require $\mathrm{p}>0$ [Zinn et al., 2019; Stassan \& Torres, 2oo8; Lindegren et al., 2018]-Require $|\mathrm{b}|>30^{\circ}$

- Remove LMC/SMC pollution cannot be removed by P error cut; excise via l, b cut and apply mirrored cuts
Choose [Hinkel, SG, Yanny, in prep.]
$G_{B P}-G_{R P} \in[0.5,2.5]$ mag; $G \in[14,18]$ mag; $R \in[7,9] \mathrm{kpc} ;|z| \in[0.2,3] \mathrm{kpc}$
Table 2. The number of stars found in each quadrant of the analysis, with $\left|180^{\circ}-\phi\right|<12^{\circ}$ Totals for the left and right are also shown. The sample is very well matched, left and right, with an aggregate asymmetry of $\mathcal{A} \approx 6 \times 10^{-4}$.

	Left	Right	Asymmetry (\%)
North	$3,376,969$	$3,471,980$	-1.39
South	$3,815,477$	$3,729,647$	1.14
TOTAL:	$7,192,446$	$7,201,627$	-0.06

14.4 million stars matched to 0.06%

Left-Right Asymmetry from Gaia DR2 Asymmetries implicitly integrate over z and R

$$
\mathcal{A}(\phi)=\frac{n_{L}(\phi)-n_{R}(\phi)}{n_{L}(\phi)+n_{R}(\phi)} ; \text { Note } n_{L}(\phi)\left[\phi>180^{\circ}\right], n_{R}(\phi)\left[\phi<180^{\circ}\right]
$$

Cross-Checks Asymmetry insensitive to stellar population chosen

Left-Right Asymmetry from Gaia DR2 Asymmetries differ N and S and sometimes marked so!

$A_{N}-A_{S}>A_{N+S}$ implies
non-steady-state effects exist!

Sources of Left-Right Asymmetry? Estimate torques (in z) at the Sun's location

Table 1. Nearby objects that torque the stars in our sample, with torque reported in units of $M_{\odot}^{2} / \mathrm{pc}$.
The errors in the inputs are such that the LMC system undoubtedly gives the largest effect.

Object	Mass $\left(M_{\odot}\right)$	distance (kpc)	$M / d^{2}\left(M_{\odot} / \mathrm{pc}^{2}\right)$	$\tau_{z}\left(M_{\odot}^{2} / \mathrm{pc}\right)$
LMC (\& SMC)	$1.4(3) \times 10^{11 \mathrm{a}}$	$52(2)^{\mathrm{b}}$	51	340,000
M31	$1.3(4) \times 10^{12 \mathrm{c}}$	$772(44)^{\mathrm{d}}$	2	$-14,000$
Triangulum	$6 \times 10^{10 \mathrm{e}}$	$839(28)^{\mathrm{f}}$	0.1	-420
Galactic Bar/bulge	$1.87(0.4) \times 10^{10 \mathrm{~g}}$	8^{h}	288	$-47,000$
Sagittarius	$2.5(1.3) \times 10^{8 \mathrm{i}}$	28^{i}	0.3	-240
Fornax	$1.6(1) \times 10^{8 \mathrm{j}}$	$138(8)^{\mathrm{j}}$	0.01	23
Carina	$2.3(2) \times 10^{7 \mathrm{j}}$	$101(5)^{\mathrm{j}}$	<0.01	16
Sextans	$4.0(6) \times 10^{7 \mathrm{j}}$	$86(4)^{\mathrm{j}}$	0.01	29
Sculptor	$3.1(2) \times 10^{7 \mathrm{j}}$	$79(4)^{\mathrm{j}}$	0.01	5
Gaia-Enceladus	$\mathcal{O}\left(10^{9}\right)^{\mathrm{k}}$	-	-	-

${ }^{f}$ Gieren et al. (2013)
g Portail et al. (2015)
${ }^{h}$ Assumed
${ }^{\text {i }}$ Law \& Majewski (2010)
j Lokas (2009)
k Helmi et al. (2018); Belokurov et al. (2018)
> the LMC (\&SMC),
> the Galactic Bar/bulge, and possibly M3I are the major players

Evidence for a Massive LMC

Orphan stream stars do not move with the stream velocity

Orphan Stream Fits: a Massive LMC Resolve v mismatch with distorted, non-axial DM halo

Distorted Dark Matter Halos

From Orphan stream fits [Erkale tall, 2009]
Milky Way model includes disk, bulge, and a DM halo (of NFW form); initially only mass and shape of the halo can change in the fit

$$
\begin{gathered}
\phi_{\mathrm{NFW}}(x, y, z)=-\frac{G M_{\mathrm{NFW}}}{\tilde{r}} \frac{\log \left(1+\frac{\tilde{r}}{r_{s}}\right)}{\log (1+c)-\frac{c}{(1+c)}} ; \\
\tilde{r}^{2}=x^{2}+y^{2}+z^{2}+\left(\frac{1}{q^{2}}-1\right)(\hat{\mathbf{n}} \cdot \mathbf{x})^{2}
\end{gathered}
$$

If \mathbf{n} does not point along \mathbf{z}, then the potential breaks axial symmetry. Note q >0 prolate, and $\mathrm{q}<0$ oblate
Reflex motion of the Milky Way can also modify the halo distortion

Confronting Distorted DM Halos

Observed vs. Computed (Orphan Best Fit) Asymmetries

$\mathrm{N}+\mathrm{S}$ asymmetry only weakly discriminates the possibilities

Confronting Distorted DM Halos Observed vs. Computed Asymmetries: $\mathrm{N}, \mathrm{S}, \& \mathrm{~N}+\mathrm{S}$

Best-fit oblate forms excluded by N, S, and N+S data

Confronting Distorted DM Halos Observed vs. Computed Asymmetries: $\mathrm{N}, \mathrm{S}, \& \mathrm{~N}+\mathrm{S}$

Compare Distorted Halo Potentials

 View along anti-center line towards Sun \& GC Prolate Reflex Prolate

Oblate

Reflex Oblate

Why Oblate Forms show little N, S sensitivity

A New View of Old Puzzles Distorted Halo from Sgr stream fits; why its orientation?

[Figure Credit: Kallivayalil (UVa) [\& Law]]
LMC: (-I,-4I,-27) kpc

Summary

- We have discovered statistically significant left-right and north-south asymmetries in the out-of-plane star counts - this speaks to axial symmetry breaking, with differences in the north and south; the N/S pattern can separate non-isolating from non-steady-state effects!
- The analysis of the Orphan stream data by Erkal et al. points to a more massive (and more accurate) LMC mass; the distorted DM halos that emerge from that analysis can yield both the size and sign of the asymmetries we observe
- A massive LMC (and distorted DM halo) can explain why the warp in the disk of HI gas is long-lived*, and it can explain the spatial elongation of star counts associated with Gaia Enceladus**
- The galactic bar/budge may drive the N-S vs. N+S features we observe close to the plane
- As motivated by Noether's theorem (and An et al., 2017), forming asymmetries to probe for failures of axial and north-south symmetry have been shown to be powerful probes of the influence of satellite torques on the overall distribution of mass in and around the MW.
*Weinberg \& Blitz, 2006 **Helmi et al., 20I8; Belokurov et al. 2018

Gaia's Sky in Color (DR2) LMC: architect of warps \& asymmetries in the Milky Way

[https://sci.esa.int/web/gaia/-/60169-gaia-s-sky-in-colour (April, 2018)]

Backup Slides

