Theory Developments in Heavy Flavor

197

SM Flavor

Nutshell: How do we describe quark/lepton interactions? SM EW Lagrangian:

$$\mathcal{L}_{\rm EW} = \frac{g_2}{\sqrt{2}} \begin{pmatrix} u & c & t \end{pmatrix} \mathcal{W} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

SM Flavor

Nutshell: How do we describe quark/lepton interactions? SM EW Lagrangian:

- Flavor changing processes through electroweak charged currents (CC)
- No tree-level flavor changing neutral currents (FCNC)
- Similar story for charged leptons with ν masses

Flavor Data

Can test SM flavor structure with CKM unitarity triangles, e.g.

 $V_{tb}^* V_{td} + V_{cb}^* V_{cd} + V_{ub}^* V_{ud} = 0$

- Huge multitude of physical observables projected onto CKM parameter plane (from decays, (in)direct CP violation, mass splittings Δm...) (see S. Stone's talk for more details)
- SM \implies all allowed regions should intersect. Lesson: Good agreement with SM flavor structure
- Leads to powerful constraints and powerful discovery potential
 Dean Robinson_drobinson@lbl.gov
 Flavor DPF

New Physics (NP) Constraints

History:

- $n \rightarrow pe\nu$: Energy scale \sim MeV, probes EW current at $\sim 100 \text{ GeV}!$
- $\Delta m_K/m_K \simeq 7 imes 10^{-15}$ predicted charm, $m_c \sim 1\text{--}2\text{GeV}$

New Physics (NP) Constraints

History:

- $n \rightarrow pe\nu$: Energy scale ~ MeV, probes EW current at ~ 100 GeV!
- $\Delta m_K/m_K \simeq 7 \times 10^{-15}$ predicted charm, $m_c \sim 1-2$ GeV

Constraints on 4-Fermi FCNC operators from e.g. meson mixing

New Physics (NP) Constraints

History:

1411.7233

JTfit

- $n \rightarrow pe\nu$: Energy scale ~ MeV, probes EW current at ~ 100 GeV!
- $\Delta m_K/m_K \simeq 7 \times 10^{-15}$ predicted charm, $m_c \sim 1-2$ GeV

Constraints on 4-Fermi FCNC operators from e.g. meson mixing

(Incomplete) Perspectives on Flavor

Precision Th. Control

Tensions: Measurements vs predictions

- $|V_{cb}|$, $|V_{ub}|$
- $(g-2)_{\mu}$ (see J. Crnkovic's talk)
- ΔA_{CP} in charm
- $b \rightarrow s \mu \mu$

...

Precision Flavor

Constrain high NP scales (no obs \gg SM prediction)

- $B_s \rightarrow \mu \mu$
- ∆M_{s,d}
- $b \rightarrow s \nu \nu$

• ...

Flavor Models

Explain SM hierarchies: Quark/lepton mass and mixing Can imply NP signals

Flavor DPF

5|22

SM

Smoking Guns

Enhancement of rare/forbidden SM

NP

Flavor symmetry violation

- $K \to \pi \nu \nu$
- $\mu \rightarrow e$
- $b \rightarrow c \ell \nu$: τ vs e, μ

Theoretically

Clean

• $b \to s\ell\ell$: $e vs \mu$

• ...

(Incomplete) Perspectives on Flavor

Space of Heavy Flavor Anomalies

Involving $B_q = (bq)$ mesons

Adapted from Z Ligeti and W Altmannshofer

Semileptonic Decays: $b \rightarrow c \ell \nu$

- Tree-level W exchange (in the SM)
- Approx. 25% of all *B* decays: huge statistics!

Semileptonic Decays: $b \rightarrow c \ell \nu$

- Tree-level W exchange (in the SM)
- Approx. 25% of all *B* decays: huge statistics!
- Theoretically clean:

Probe of lepton flavor universality

 $g_2~(\ell=e,~\mu,~ au)$ up to masses:

 $m_{ au}\simeq 1777 {
m MeV}$ vs $m_{\mu}=105 {
m MeV}$;

PS and hadronic effects

Semileptonic Decays: $b \rightarrow c \ell \nu$

- Tree-level W exchange (in the SM)
- Approx. 25% of all *B* decays: huge statistics!
- Theoretically clean:

Probe of lepton flavor universality $g_2 \ (\ell = e, \ \mu, \ \tau)$ up to masses: $m_\tau \simeq 1777 \text{MeV}$ vs $m_\mu = 105 \text{MeV}$; PS and hadronic effects Hadronic matrix elements \implies measure $|V_{cb}|$ in exclusive $l = e, \mu$ modes

(more details in tomorrow's parallel session)

Two Anomalies/Puzzles

1. Inclusive $B \to X_c l \nu$ versus exclusive $B \to D^* l \nu$

Measurement is done with $\textit{I}=\textit{e},\,\mu$: The τ mode involves more ν 's from τ decays and less statistics

$$egin{aligned} |V_{cb}|_{X_c} &\simeq (42.2 \pm 0.8) imes 10^{-3} \ |V_{cb}|_{D^*} &\simeq (38.7 \pm 0.7) imes 10^{-3} \end{aligned}$$

A 3σ tension?!?

2. Can factor out $|V_{cb}|$, and measure the ratios

$$R(D^{(*)})\equiv rac{\Gamma[B o D^{(*)} au
u_ au]}{\Gamma[B o D^{(*)}I
u]}\,,\qquad I=e,\ \mu\,.$$

$R(D^{(*)})$ anomaly

Persistent hints of lepton flavor universality violation for 7+ years

Also mild anomaly in $B_c \rightarrow J/\psi \tau \nu$, and (possibly) in $B \rightarrow X_c \tau \nu$.

• More measurements are coming! E.g. R(D) or $R(\Lambda_b)$ from LHCb

Hadronic Matrix Elements

For exclusive processes: Main theory uncertainty is mapping partons \rightarrow hadrons:

Use parametrizations of form factors

$$\left\langle D^* \right| \overline{c} \Gamma^{\mu} b \left| \overline{B} \right\rangle \sim FF_{\varepsilon}(q^2) \varepsilon^{\mu} + FF_B(q^2) p_B^{\mu} + FF_{D^*}(q^2) p_{D^*}^{\mu}$$

- Logic: Fit to I = e, μ SM measurements; predict SM or NP τ modes
- Ultimate: Lattice calculations! But only limited results currently available

$|V_{cb}|$ developments

- The Belle expt published an unfolded $B \rightarrow D^* l \nu$ dataset 1702.01521. Permits theorists to fit with different FF parametrization choices
- Using parametrization based on just analyticity and unitarity ('BGL'):

$ V_{cb} _{ m `CLN'} = (38.2 \pm 1.5) imes 10^{-3}$,	1702.01521 [Belle]
$ V_{cb} _{^{+}BGL^{'}}=(41.7^{+2.0}_{-2.1}) imes10^{-3}$,	1703.06124, 1707.09509 [Bigi, Gambino, Schacht]
$ V_{cb} _{{}^{'}BGL'} = (41.9^{+2.0}_{-1.9}) imes 10^{-3}$,	1703.08170 [Grinstein, Kobach]

- Compare with $|V_{cb}|_{
 m incl} = (42.2 \pm 0.8) imes 10^{-3}$
- Does this resolve $|V_{cb}|$ incl vs excl tension?

Tensions

Fits that lift $|V_{cb}|$ lead to Heavy Quark Effective Theory (HQET) tensions Bernlochner, Ligeti, Papucci, DR [1708.07134, 1902.09553]

Tensions

Fits that lift $|V_{cb}|$ lead to Heavy Quark Effective Theory (HQET) tensions Bernlochner, Ligeti, Papucci, DR [1708.07134, 1902.09553]

NP Explanations: General 4-Fermi basis At dimension-6

$$\mathcal{O}_6\sim rac{\mathcal{C}}{\Lambda^2}ig(\overline{c}\Gamma big)ig(\overline{ au}\Gamma'
uig) \qquad \mathcal{C}\in\mathbb{C}(\Rightarrow ext{cpv})$$

Wilson coefficients:

Simplified models:

Normalized against SM: $\Lambda \sim (2\sqrt{2}G_F V_{cb})^{-1/2} \sim 870 \text{ GeV}.$ For 20–30% enhancement, expect TeV scale NP

- No* NP in $B \rightarrow D^{(*)} l\nu$: $|V_{cb}|$ constraints
- Huge literature for NP model building for $R(D^{(*)})$
- Simplified model mediators: EW charged scalars, W''s or leptoquarks $(\widetilde{R}_2, S_1, U_1, ...)$

NP Status

- Tensions on W' and leptoquark C_V and $C_{S\pm T}$ type models \circ LHC: $pp \rightarrow \tau \tau / \tau \nu$
 - $\circ~$ LHC: single or pair production $+~bc,~b\tau,~c\tau$ final states
 - Flavor: b-s bounds (If there is a quark doublet involved)
- Pure C_S (Φ , \widetilde{R}_2) leptoquark models face $B_c \rightarrow \tau \nu$ tensions
- Eg. LHC exclusions/allowed regions for a vector leptoquark ($U_1 \sim (3,1)_{2/3})$

1807.04753 [DR, Shakya, Zupan]

NP Status

- Tensions on W' and leptoquark C_V and $C_{S\pm T}$ type models \circ LHC: $pp \rightarrow \tau \tau / \tau \nu$
 - $\circ~$ LHC: single or pair production $+~bc,~b\tau,~c\tau$ final states
 - Flavor: b-s bounds (If there is a quark doublet involved)
- Pure C_S (Φ , \widetilde{R}_2) leptoquark models face $B_c \rightarrow \tau \nu$ tensions
- Latest (post-Moriond) global fits to $R(D^{(*)})$, plus other obs. 1904.09311, 1904.10432

1904.09311 [Murgui, Penuelas, Jung, Pich]

NP Status

1904.09311. 190

- Tensions on W' and leptoquark C_V and $C_{S\pm T}$ type models \circ LHC: $pp \rightarrow \tau \tau / \tau \nu$
 - $\circ~$ LHC: single or pair production $+~bc,~b\tau,~c\tau$ final states
 - Flavor: *b*-*s* bounds (If there is a quark doublet involved)

• Pure C_S (Φ , \tilde{P}_{e}) loptoquark models face R_{e}) or tensions. Caveat: Measurement is a Latest (pos simultaneous BG + signal fit

- Naive global fits miss large SM/NP model template dependence
- Can't take fit exclusions/allowed regions too seriously
- Extensive program to correct this: expt reweighting software tool for direct WC fits Hammer [Bernlochner, Duell, Ligeti, Papucci, DR] hammer.physics.lbl.gov

Rare decays: $b \rightarrow s \ell \ell$

b s

• Loop (penguin) process

$$\mathcal{M}\sim rac{1}{16\pi^2}rac{g^4}{m_W^2}V_{ts}V_{tb}rac{m_t^2}{m_W^2}$$

• Experimentally clean signal: $B \to K^{(*)}\ell\ell$

Lepton Universality Tests

Factor out hadronic uncertainties: Consider ratio (see S. Sandilya's talk!)

$$R_{K^{(*)}} = rac{B o K^{(*)} ee}{B o K^{(*)} \mu \mu}$$
 (in various q^2 binnings)

Should be 1.00 ± 0.01 in SM!

Bordone, Isidori, Pattori [1605.07633]

 $R_{K^+} = 0.846^{+0.060+0.016}_{-0.054-0.014}$

 $R_{K^{*0}} = 0.69^{+0.11}_{-0.07} \pm 0.05$,

Deviations of about 2.5 σ in each mode/ q^2 bin

Dean Robinson d	drobinson@lbl.gov
-----------------	-------------------

Lepton Universality Tests

Factor out hadronic uncertainties: Consider ratio (see S. Sandilya's talk!)

$$R_{K^{(*)}} = {B o K^{(*)} ee \over B o K^{(*)} \mu \mu}$$
 (in various q^2 binnings)

Should be 1.00 \pm 0.01 in SM!

Bordone, Isidori, Pattori [1605.07633]

 $R_{K^+} = 0.846^{+0.060+0.016}_{-0.054-0.014}$

 $R_{K^{*0}} = 0.69^{+0.11}_{-0.07} \pm 0.05$,

Puzzle: Precision moments

Measure angular distributions in

 $B \to K^* (\to K \pi) \mu \mu$

Deviations of about 2.5σ in several q^2 bins, but SM predictions are hard.

NP Explanations

SM-like SL operators at dimension-6:

$$\frac{C_{9}^{(\prime)}}{\Lambda^{2}}(\overline{s}\gamma_{\mu}P_{L(R)}b)(\mu\gamma^{\mu}\mu)+\frac{C_{10}^{(\prime)}}{\Lambda^{2}}(\overline{s}\gamma_{\mu}P_{L(R)}b)(\mu\gamma^{\mu}\gamma^{5}\mu)$$

Normalized against loop SM: $\Lambda \sim 4\pi v / \sqrt{V_{tb}V_{ts}} \sim 10$ TeV. Expect 10 TeV scale NP

- Large amount of NP model building
- Typically leptoquarks or Z' models (e.g. gauged $L_{\mu}-L_{ au}$)
- Some attempts to relate to $R(D^{(*)})$.

 $C_{S,P}$ operators bounded by $B_s \to \mu\mu$; C_7 from $b \to s\gamma$; $C'_{9,10}$ highly disrupt angular fits: focus on $C_{9,10}$

• Non-trivial: Mild coincidence for $R_{K^{(*)}}$ and P_5' explanations

Aebischer et al [1903.10434]

 $C_{S,P}$ operators bounded by $B_s \to \mu\mu$; C_7 from $b \to s\gamma$; $C'_{9,10}$ highly disrupt angular fits: focus on $C_{9,10}$

- Non-trivial: Mild coincidence for $R_{K^{(*)}}$ and P_5' explanations
- Good agreement for C₉ = -C₁₀ plus universal C₉

Aebischer et al [1903.10434]

 $C_{S,P}$ operators bounded by $B_s \to \mu\mu$; C_7 from $b \to s\gamma$; $C'_{9,10}$ highly disrupt angular fits: focus on $C_{9,10}$

- Non-trivial: Mild coincidence for $R_{K^{(*)}}$ and P_5' explanations
- Good agreement for $C_9 = -C_{10}$ plus universal C_9

Naive global combination with $R(D^{(*)})$ \implies vector leptoquark $U_1 \sim (3, 1)_{2/3}$

But same cautions apply for $R(D^{(*)})$ data

Aebischer et al [1903.10434]

 $C_{S,P}$ operators bounded by $B_s \rightarrow \mu\mu$; C_7 from $b \rightarrow s\gamma$; $C'_{9,10}$ highly disrupt angular fits: focus on $C_{9,10}$

Dean Robinson drobinson@lbl.gov

Flavor DP

Bonus: Long-lived Particles (LLPs)

Emerging hot topic for future LHC searches: Look for displaced decays-in-flight of exotic LLPs E.g. in the SM: K_L , π^+ , n, μ

 Occur generically in beyond SM extensions with small couplings or scale (or loop) hierarchies or phase space suppression: SUSY, Composite Higgs, Hidden Valleys, (inelastic) DM, neutrino masses

• If SM backgrounds are controlled: clean signature of NP

Beyond LHC: A large number of proposals SHiP, MATHUSLA, FASER, CODEX-b, ...

Bonus: Long-lived Particles (LLPs)

Emerging hot topic for future LHC searches: Look for displaced decays-in-flight of exotic LLPs E.g. in the SM: K_L , π^+ , n, μ

 Occur generically in beyond SM extensions with small couplings or scale (or loop) hierarchies or phase space suppression: SUSY, Composite Higgs, Hidden Valleys, (inelastic) DM, neutrino masses

broken sym weak mixing/ marginal of technically natural Dominant production portals may occur through FCNC processes

E.g. Dark scalar ϕ via $b \rightarrow s\phi$

• If SM backgrounds are controlled: clean signature of NP

Beyond LHC: A large number of proposals SHiP, MATHUSLA, FASER, CODEX-b, ...

Dean Robinson drobinson@lbl.gov

4

BSM WG 1901.09966 [Physics Beyond Colliders:

E.g. Higgs-scalar mixing

- $\mathcal{L} \sim \phi H^{\dagger} H$
- Higgs-scalar mixing angle θ induces Yukawa $y_f \sin \theta \phi \overline{f} f$
- Production via $b \rightarrow s\phi$ and decay controlled by single parameter

E.g. Higgs-scalar mixing

- $\mathcal{L} \sim \phi H^{\dagger} H$
- Higgs-scalar mixing angle θ induces Yukawa $y_f \sin \theta \phi \overline{f} f$
- Production via $b \rightarrow s \phi$ and decay controlled by single parameter

Summary

- Space of smoking guns and precision measurements: lots of heavy flavor mysteries to be understood!
- Precision tensions in $|V_{cb}|$, $b \rightarrow s \mu \mu$ will be established or resolved with more data
- Smoking gun anomalies suggest leptoquarks, but more careful, self-consistent study is needed (at least for $b \rightarrow c\tau\nu$, $R(D^{(*)})$ interpretations)
- Emerging and crucial role for flavor in development of the LLP program at LHC and beyond

Thanks!