Rare Decays and Lepton Flavor Universality Ratios

Saurabh Sandilya
University of Cincinnati
(Jul 29, 2019)
• We will focus on rare decays of mesons containing a b-quark: “B-mesons”

• **Dominant decays of b-quarks are tree level transitions** $b \rightarrow cW^-$. There are also rare tree transition $b \rightarrow uW^-$ (suppressed by $|V_{cb}/V_{ub}|^2$).

• $b \rightarrow s$ (or, $b \rightarrow d$) quark level transitions are FCNCs and are forbidden in the SM at the tree level and can only occur at greatly suppressed rates through higher-order processes (penguin loops/box).
• The decays such as $B \rightarrow K(\ast) \ell^+ \ell^-$ are manifestations of quark level transitions $b \rightarrow s\ell^+ \ell^-$.

The γ/Z Penguin loops

W^+W^- Box Diagram

a virtual t quark contribution dominates, with secondary contributions from virtual c and u quarks.

• Sensitive to NP: Interference from the ‘possible’ contribution from the BSM.

• These decays are rich laboratories of NP studies on its own and offer hope of new physics.
• The decays such as $B \to K^{(*)} \ell^+ \ell^-$ are manifestations of quark level transitions $b \to s \ell^+ \ell^-$.

\[
\begin{align*}
\text{\gamma/Z Penguin loops} & \quad \text{Box Diagram} \\
\end{align*}
\]

a virtual t quark contribution dominates, with secondary contributions from virtual c and u quarks.

The relevant effective Hamiltonian:

\[
H_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts} \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O'_i) + \text{h.c.}
\]

The Operators which are most sensitive to the NP:

- O_7 dipole
- O_9 and O_{10} four fermion
First observation of a $b \rightarrow s\ell^+\ell^-$ decay (LP-2001)

$B^+ \rightarrow K^+\mu^+\mu^-$ Event

$B^+ \rightarrow K^+\mu^+\mu^-$
$B^0 \rightarrow K_s^0\mu^+\mu^-$
combined

29.5 fb$^{-1}$

9.5$^{+3.7}_{-3.1}$ events
4.8σ

Lepton Photon 01, 2001 July 23, Roma
Forward Backward asymmetry in $B \rightarrow K^* \ell^+ \ell^-$

Based on 657 M BB pairs, $\mu^+ \mu^-$ and e^+e^- hadrons are produced:

- $B \rightarrow K^+\pi^-, K_S^0\pi^+, K^+\pi^0, K^+$ and K_S^0

F_L and A_{FB} are obtained from fit to $\cos\theta_{K^*}$ and $\cos\theta_{B\ell}$

\[
\begin{align*}
\frac{3}{2}F_L \cos^2\theta_{K^*} + \frac{3}{4}(1 - F_L)(1 - \cos^2\theta_{K^*}) & \varepsilon(\cos\theta_{K^*}) \\
\frac{3}{4}F_L (1 - \cos^2\theta_{B\ell}) + \frac{3}{8}(1 - F_L)(1 + \cos^2\theta_{B\ell}) & + A_{FB} \cos\theta_{B\ell} \varepsilon(\cos\theta_{B\ell})
\end{align*}
\]

For full q^2 range:

- $R(K^*) = 0.83 \pm 0.17 \pm 0.08$
- $R(K) = 1.03 \pm 0.19 \pm 0.06$

Till last year
Angular Analysis of $B \to K^* \ell^+ \ell^-$

- A number of angular observables in $B \to K^* \ell^+ \ell^-$ decays can be theoretically predicted with good control of the relevant form factor uncertainties.

- The observables P_i' are considered to be largely free from form-factor related uncertainties (Introduced by LHCb in PRL 111, 191801 (2013)).

- Measurements are mostly compatible with the SM.
- LHCb observed deviation wrt SM predictions in P_5' with 3.7σ.
- Belle observed similar central values for the P_5' anomaly $q^2 \in (1.1, 6.0)$ GeV2/c4 with 2.5σ tension.

P_i' and Q_i' in separate lepton flavors

- The Largest deviation in the muon mode with \(2.6\sigma\).
- Electron mode is deviating with \(1.1\sigma\).
- Belle (II) is equally efficient in e & \(\mu\) modes.

- With 2.8 ab\(^{-1}\) the uncertainty on \(P_5'(e \& \mu)\) at Belle II will be comparable to LHCb 3fb\(^{-1}\) (\(\mu\) only). B2TIP report | arXiv:1808.10567

- Test lepton flavor universality.
- Observables \(Q_i = P_i'\mu - P_i'e\).
 [JHEP 10, 075 (2016)]
- Deviation from zero very sensitive to NP.

- No significant deviation from zero is seen.
- \(Q_4\) and \(Q_5\) observables in agreement with SM and central values favoring NP scenario.
Lepton Flavor Universality Ratios

- The lepton flavor universality can be tested very precisely with the ratios:

\[
R_H[q_0^2, q_1^2] = \frac{\int_{q_0^2}^{q_1^2} dq^2 \frac{d\Gamma(B \rightarrow H\mu^+\mu^-)}{dq^2}}{\int_{q_0^2}^{q_1^2} dq^2 \frac{d\Gamma(B \rightarrow He^+e^-)}{dq^2}} \ ; H = K, K^*
\]

- In these ratios, hadronic uncertainties in theoretical predictions cancel and SM prediction is (very) close to unity.

- Experimentally, many sources of systematic uncertainties are also substantially reduced.

Status till last year 2018

Updates from Belle & LHCb this year

Updates from Belle this year

LHCb, Phys. Rev. Lett. 113 (2014) 151601

LHCb, JHEP08(2017)055

BaBar, Phys. Rev. D 86 (2012) 032012

[BIP, EPJC 76 440] [CDHMV, JHEP04(2017)016]

[EOS, PRD 95 035029] [flav.io, EPJC 77 377] [JC, PRD93 014028]
Recent R(K*) measurement at Belle

- Reconstructed B⁰ and B⁺: \(B \rightarrow K^*(892)\ell^+\ell^- \rightarrow \mu^+\mu^- \) and \(e^+e^- \)
- Full Belle data set 711 fb⁻¹
- Bremsstrahlung losses are recovered in electron candidates.

Hierarchical NN Reconstruction: A dedicated NN classifier is trained with MC samples to identify each particle type used in the decay chain.

- To further suppress \((e^+e^- \rightarrow q\bar{q}) \) background events, variables related to event shape variables, vertex information are used in the NN.

- Large irreducible background events arise from the decay \(B \rightarrow K^*/\psi[\psi(2S)] \), which are vetoed by applying criteria on di-lepton invariant mass.

- However, the decays \(B \rightarrow K^*/\psi[\psi(2S)] \) serve as a very good Control Sample.

\[
\frac{BF[B \rightarrow K^*/\psi(\rightarrow \mu^+\mu^-)]}{BF[B \rightarrow K^*/\psi(\rightarrow e^+e^-)]} = 1.015 \pm 0.025 \pm 0.038
\]
Recent R(K*) measurement at Belle

- Signal is extracted in Beam Constrained Mass: \[M_{bc} = \sqrt{E_{\text{beam}}^2 - |\vec{p}_B|^2} \]
- Signal pdf: **Crystal Ball**, Combinatorial background pdf: **Argus shape**.
- For example, the fit presented below are for the \(q^2 > 0.045 \text{ GeV}^2/c^4 \)

Analysis is performed in several \(q^2 \) bins \([0.045, 1.1], [1.1, 6.0], [0.1, 8.0], [15, 19], \) and \(> 0.045 \text{ GeV}^2/c^4 \)
• Belle also provided first measurement of $R(K^{*+})$.
• Latest $R(K^*)$ measurement from Belle are consistent with the SM as well as with the previous measurements from LHCb (and BaBar).

LHCb measurements for $R(K^*)$:

\[
0.66^{+0.11}_{-0.07}\text{ (stat)} \pm 0.03 \text{ (sys.)} \\
\text{for } q^2 \in (0.045,1.1) \text{ GeV}^2/c^4 \\
2.1 - 2.3 \sigma \text{ from SM}
\]

\[
0.69^{+0.11}_{-0.07}\text{ (stat)} \pm 0.05 \text{ (sys.)} \\
\text{for } q^2 \in (1.1,6.0) \text{ GeV}^2/c^4 \\
2.4 - 2.5 \sigma \text{ from SM}
\]

Belle measurements for $R(K^*)$:

\[
0.52^{+0.36}_{-0.26}\text{ (stat)} \pm 0.05 \text{ (sys.)} \\
\text{for } q^2 \in (0.045,1.1) \text{ GeV}^2/c^4
\]

\[
0.96^{+0.29}_{-0.27}\text{ (stat)} \pm 0.11 \text{ (sys.)} \\
\text{for } q^2 \in (1.1,6.0) \text{ GeV}^2/c^4
\]

SM example: JHEP 1801 (2018) 093
for $q^2 \in (0.045,1.1) \text{ GeV}^2/c^4$: 0.92 ± 0.02
for $q^2 \in (1.1,6.0) \text{ GeV}^2/c^4$: 1.00 ± 0.01
Recent R(K) measurement at LHCb

- Reconstructed $B^+ : B^+ \rightarrow K^+ \ell^+\ell^-$ using 5 fb$^{-1}$ of pp collision at CM energy 7, 8 and 12 TeV
- Significantly different reconstruction of decays with muons in the final state as compared to decays with electrons (brem losses and different trigger selection).

Measure R_K as a double ratio:

$$R_K = \frac{\mathcal{B}(B^+ \rightarrow K^+\mu^+\mu^-)}{\mathcal{B}(B^+ \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K^+)} \bigg/ \frac{\mathcal{B}(B^+ \rightarrow K^+e^+e^-)}{\mathcal{B}(B^+ \rightarrow J/\psi(\rightarrow e^+e^-)K^+)}$$

- Several cross-checks are used to verify the analysis procedure.
 - Single ratio $r(J/\psi) = [1.014 \pm 0.035]$ is found to be consistent with unity (also as a function momentum of leptons and dilepton opening angle.)
 - Double ratio $R_{K}^{\psi(2S)} = [0.986 \pm 0.013]$ is determined close to 1.
Recent R(K) measurement at LHCb

- Reconstructed $B^+ : B^+ \to K^+ \ell^+ \ell^-$ using 5 fb$^{-1}$ of pp collision at CM energy 7, 8 and 12 TeV

- Significantly different reconstruction of decays with muons in the final state as compared to decays with electrons (brem losses and different trigger selection).

- A total of $1943 \pm 49 \ B^+ \to K^+ \mu^+ \mu^-$ decays are observed.

- The value of $R_K \ [q^2 \in (1.1, 6.0) \text{ GeV}^2/c^4] = 0.846^{+0.016}_{-0.014} \text{ (sys.)}$
Recent R(K) measurement at Belle

- Reconstructed B^0 and B^+: $B \rightarrow K \ell^+ \ell^-$
- Full Belle data set 711 fb^{-1}
- Charged tracks are required to originate near the interaction region (except K_S^0) and further selected based on particle identification.
- Bremsstrahlung losses are recovered in electron candidates.
- A NN is trained with input variables related event shape, vertex quality and decay kinematics to suppress the background from continuum and generic B decays.
- Large irreducible background events arise from the decay $B \rightarrow K J/\psi[\psi(2S)]$, which are vetoed by applying criteria on di-lepton invariant mass.
- Also a veto $[M_{K\pi} \notin (1.85, 1.88) \text{ GeV}/c^2]$ is applied to suppress events arising from the decay $B^- \rightarrow D^0[K^- \pi^+] \pi^-$ due to particle mis-identification.
- The decays $B \rightarrow K J/\psi[\psi(2S)]$ served as a good control sample.

\[
\frac{BF[B^+ \rightarrow K^+ J/\psi(\rightarrow \mu^+ \mu^-)]}{BF[B^+ \rightarrow K^+ J/\psi(\rightarrow e^+ e^-)]} = 0.992 \pm 0.011 \\
\frac{BF[B^0 \rightarrow K_S^0 J/\psi(\rightarrow \mu^+ \mu^-)]}{BF[B^0 \rightarrow K_S^0 J/\psi(\rightarrow e^+ e^-)]} = 1.048 \pm 0.020
\]
• The NN output (O) is translated to (O’) using the formula:

\[O' = \log \frac{O - O_{\text{min}}}{O_{\text{max}} - O} \]

• Requirement \(O_{\text{min}} > -0.6 \) reduces 75\% bkg with 4-5\% signal loss.

• Extended maximum likelihood fit is performed in 3-dimensions: \(M_{bc}, \Delta E (E_B - E_{\text{beam}}), \) and \(O' \). (parameterized with MC, control samples and off-resonance data).

• For example, the fit presented below are for the \(q^2 > 0.1 \text{ GeV}^2/c^4 \)

\[B^+ \rightarrow K^+ \mu^+ \mu^- \quad 137 \pm 14 \]
\[B^0 \rightarrow K_S^0 \mu^+ \mu^- \quad 27.3^{+6.6}_{-5.8} \]

\[B^+ \rightarrow K^+ e^+ e^- \quad 138 \pm 15 \]
\[B^0 \rightarrow K_S^0 \mu^+ \mu^- \quad 21.8^{+7.0}_{-6.1} \]

• The value of \(R_K [q^2 \in (1.0, 6.0) \text{ GeV}^2/c^4] = 0.98^{+0.27}_{-0.23} \text{ (stat.) } \pm 0.06 \text{ (sys.)} \)
• **Belle measured $R(K)$ in several q^2 bins** and also reported first measurement of $R(K_{s0})$.

• In all the bins Belle’s $R(K)$ is **consistent with SM** value.

- **Belle measurement** $R(K)$
 \[0.98^{+0.27}_{-0.23} \pm 0.06\] [in $q^2 \in (1.0, 6.0) \text{ GeV}^2/c^4$] **is consistent with LHCb measurement** of $R(K) = 0.846^{+0.060}_{-0.054}^{+0.016}_{-0.014}$ [in $q^2 \in (1.1, 6.0) \text{ GeV}^2/c^4$].

- **LHCb measurement** is compatible with SM at 2.5σ.

• In fact, Belle $R(K^+) = 1.31^{+0.34}_{-0.31} \pm 0.07$ [in $q^2 \in (1.0, 6.0) \text{ GeV}^2/c^4$]
Recent A(I) measurement at Belle

• Another theoretically clean observable is CP averaged isospin asymmetry:

\[A_I = \frac{\left(\frac{\tau_{B^+}}{\tau_{B^0}} \right) \times \mathcal{B}(B^0 \rightarrow K^0 \ell \ell) - \mathcal{B}(B^+ \rightarrow K^+ \ell \ell)}{\left(\frac{\tau_{B^+}}{\tau_{B^0}} \right) \times \mathcal{B}(B^0 \rightarrow K^0 \ell \ell) + \mathcal{B}(B^+ \rightarrow K^+ \ell \ell)} \]

The value of A(I) is expected to be close to zero in the SM.

J. Lyon and R. Zwicky,

• Earlier, BaBar [PRD 86, 032012 (2012)], Belle [PRL103, 171801 (2009)] and LHCb [JHEP 06 (2014)133] had reported A(I) to be significantly below zero, especially in the \(q^2 \) region below the \(J/\psi \) resonance.

• Belle’s A(I) measurement is consistent with the previous measurements.

• In all bins A(I) is below zero.
Recent A(I) measurement at Belle

- Another theoretically clean observable is CP averaged isospin asymmetry:

\[
A_I = \frac{\left(\frac{\tau_{B^+}}{\tau_{B^0}} \right) \times \mathcal{B}(B^0 \to K^0 \ell \ell) - \mathcal{B}(B^+ \to K^+ \ell \ell)}{\left(\frac{\tau_{B^+}}{\tau_{B^0}} \right) \times \mathcal{B}(B^0 \to K^0 \ell \ell) + \mathcal{B}(B^+ \to K^+ \ell \ell)}
\]

The value of A(I) is expected to be close to zero in the SM.

- Earlier, BaBar [PRD 86, 032012 (2012)], Belle [PRL103, 171801 (2009)] and LHCb [JHEP 06 (2014)133] had reported A(I) to be significantly below zero, especially in the \(q^2 \) region below the J/ψ resonance.

\[B \rightarrow K\mu^+\mu^-\]

\[B \rightarrow K\mathbf{e}^+\mathbf{e}^-\]
Belle II Projections for R(K) and R(K*)

- Upcoming Belle II measurements will be helpful in reducing statistical uncertainties.
- Total uncertainties on R(K) and R(K*) measurements can reach down to below 5% with full data-set at Belle II.
- Uncertainties are still statistical dominant (total systematic is below 1% with dominating uncertainty from lepton identification ~ 0.4%)

Belle II Commissioning, First Results, and Future Prospects: Z. Liptak (Jul 31st)

Quark & Lepton Flavor Session
Summary

- The decays $B \rightarrow K^{(*)} \ell^+ \ell^-$ are FCNC processes and is a laboratory of New Physics studies on its own.

- The ratio of branching fractions $R(K)$ and $R(K^*)$ are theoretically as well as experimentally clean variables.

- Most precise results come from LHCb collaboration and reported (this year: **PRL122 (2019) 191801**) a deviation of 2.6σ in $q^2 \in (1.1,6.0)$ GeV2/c4 for $R(K)$ and similar deviations were reported earlier in $R(K^*)$ **JHEP08(2017)055**.

- Belle measurements of $R(K^*)$ (**arXiv:1904.02440**) and $R(K)$ are compatible with both SM as well as with past measurements.

- Belle A(I) measurement for $B \rightarrow K \ell^+ \ell^-$ is found significantly below zero (specially in $q^2 \in (1.0,6.0)$ GeV2/c4 for decay $B \rightarrow K \mu^+ \mu^-$ with deviation $\sim 2.7\sigma$).

- Belle II experiment has started physics runs and expected to accumulate larger data sample, which will be crucial for rare decays measurements.

No penguins were harmed in any of these measurements
Extra Slides
The APS (DPF) Meeting 2019 | S. Sandilya

LHCb prospects

From slides of Julián García Pardiñas (Win 2019) & Vitalii Lisovskyi (EPSHEP 2019)
arXiv:1903.0961
[Alok, Amol, Shireen, Dinesh]

- analyze all the scenarios where the NP contributes to a pair of $(O_9, O_{10}, O'_9, O'_{10})$ operators at a time.

- Scenarios with new physics contributions to the (C^NP_9, C'_9) or $(C^\text{NP}_9, C^\text{NP}_{10})$ pair remain the most favored ones.
Forward Backward asymmetry in $B \rightarrow K^* \ell^+ \ell^-$

$B \rightarrow K^{(*)} \ell^+ \ell^-$ based on 657 M BB pairs

$\mu^+ \mu^-$ and $e^+ e^-$

$K^+ \pi^-, K_S^0 \pi^+, K^+ \pi^0, K^+$ and K_S^0

F_L and A_{FB} are obtained from fit to $\cos \theta_{K^*}$ and $\cos \theta_{B\ell}$

For illustration in $q^2 \in (0, 2.0) \text{ GeV}^2/c^2$

$R(K^*) = 0.83 \pm 0.17 \pm 0.08$

$R(K) = 1.03 \pm 0.19 \pm 0.06$

Till this year
Belle II prospects for $B \rightarrow X_s \ell^+ \ell^-$

- Belle II can significantly improve upon this situation and with its expected larger statistics.

- In the beginning, Belle II will still have to rely on the sum-of-exclusive method but later fully inclusive analysis can also be attempted.

<table>
<thead>
<tr>
<th>Observables</th>
<th>Belle 0.71 ab$^{-1}$</th>
<th>Belle II 5 ab$^{-1}$</th>
<th>Belle II 50 ab$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Br(B \rightarrow X_s \ell^+ \ell^-)$ ([1.0, 3.5] GeV2)</td>
<td>29%</td>
<td>13%</td>
<td>6.6%</td>
</tr>
<tr>
<td>$Br(B \rightarrow X_s \ell^+ \ell^-)$ ([3.5, 6.0] GeV2)</td>
<td>24%</td>
<td>11%</td>
<td>6.4%</td>
</tr>
<tr>
<td>$Br(B \rightarrow X_s \ell^+ \ell^-)$ (> 14.4 GeV2)</td>
<td>23%</td>
<td>10%</td>
<td>4.7%</td>
</tr>
<tr>
<td>$A_{FB}(B \rightarrow X_s \ell^+ \ell^-)$ ([1.0, 3.5] GeV2)</td>
<td>26%</td>
<td>9.7%</td>
<td>3.1%</td>
</tr>
<tr>
<td>$A_{FB}(B \rightarrow X_s \ell^+ \ell^-)$ ([3.5, 6.0] GeV2)</td>
<td>21%</td>
<td>7.9%</td>
<td>2.6%</td>
</tr>
<tr>
<td>$A_{FB}(B \rightarrow X_s \ell^+ \ell^-)$ (> 14.4 GeV2)</td>
<td>19%</td>
<td>7.3%</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

5% CL on the $R_{9,10} = \frac{C_{9,10}}{C_{9,10}^{SM}}$

In SM: $R_{9,10} = 1$

Belle II reach measurement of the forward-backward asymmetry from global analysis

Exclusion contours in the $C_{9}^{NP} - C_{10}^{NP}$ plane resulting from future BF and A_{FB} for $B \rightarrow X_s \ell^+ \ell^-$
Measurement of $A_{FB}(B \rightarrow X_s \ell^+ \ell^-)$

- Inclusive measurement is theoretically cleaner than the exclusive, but experimentally more challenging.

- Sum-of-exclusive technique (10 modes with $M[X_s] < 2.0 \text{ GeV}/c^2$) used to measured A_{FB} (corresponds to ~50% of the inclusive rate).

\Leftarrow For illustration in $q^2 \in (1, 6) \text{ GeV}^2/c^2$

- The result is consistent with a SM prediction within error (1.8σ tension in low-q^2).

- Results are statistically dominated \rightarrow Belle II (with its expected larger statistics).

- Also, fully inclusive analysis can also be attempted in Belle II.
The differential decay rate for $B \rightarrow K^* \ell^+ \ell^-$ can be written as

$$\frac{1}{d\Gamma/dq^2 d\cos \theta_L d\cos \theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K \right. \\
+ \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_L \\
- F_L \cos^2 \theta_K \cos 2\theta_L + S_3 \sin^2 \theta_K \sin^2 \theta_L \cos 2\phi \\
+ S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi \\
+ S_6 \sin^2 \theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi \\
+ S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_L \sin 2\phi \left. \right] ,$$
In the decay $B^0 \rightarrow K^{*0} \mu^+ \mu^-$, followed by $K^{*0} \rightarrow K^+ \pi^-$, the direction of the four outgoing particles can be described by three angles, shown in Fig. 11. The forward-backward asymmetry A_{FB} is defined as the relative difference between the number of positive and negative leptons going along the direction of the B^0 meson in the rest frame of the two-lepton system. This corresponds to an asymmetry in the distribution of the θ_ℓ angle. Similarly, the K^{*0} polarisation fraction F_L depends on the angle θ_K, defined analogously to θ_ℓ. Other asymmetries can be constructed from the other angles or combinations of them. The P_5' asymmetry suggested by Ref. 101 is based on the angles θ_K and ϕ. It is defined as the relative difference between the number of decays in the regions in red and blue in Fig. 12, divided by $\sqrt{F_L(1-F_L)}$. Quantities based on several angles are more difficult to measure than single-angle ones as they require a better understanding of the reconstruction efficiencies depending on the kinematics of the outgoing particles.
Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$ at Belle

The differential decay rate for $B \rightarrow K^* \ell^+ \ell^-$ can be written as

$$
\frac{1}{d\Gamma / dq^2} \frac{d^4 \Gamma}{d \cos \theta_L \, d \cos \theta_K \, d\phi \, dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K \\
+ \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_L \\
- F_L \cos^2 \theta_K \cos 2\theta_L + S_3 \sin^2 \theta_K \sin^2 \theta_L \cos 2\phi \\
+ S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi \\
+ S_6 \sin^2 \theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi \\
+ S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_L \sin 2\phi \right]
$$

JHEP 01 (2009) 019

The observables are considered to be largely free from form-factor related uncertainties.

$P'_{4, 5, 6, 8} = \frac{S_{i=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$

$P'_{4, 5, 6, 8}$, S_4, S_5

- $P'_{4, 5, 6, 8}$, S_4, S_5 defined as
- $\phi \rightarrow -\phi$ for $\phi < 0$
- $\phi \rightarrow \pi - \phi$ for $\theta_L > \pi/2$
- $\theta_L \rightarrow \pi - \theta_L$ for $\theta_L > \pi/2$
Folding Procedure

\[P'_4, S_4 : \begin{cases}
\phi \rightarrow -\phi & \text{for } \phi < 0 \\
\phi \rightarrow \pi - \phi & \text{for } \theta_L > \pi/2 \\
\theta_L \rightarrow \pi - \theta_L & \text{for } \theta_L > \pi/2,
\end{cases} \]

\[P'_5, S_5 : \begin{cases}
\phi \rightarrow -\phi & \text{for } \phi < 0 \\
\theta_L \rightarrow \pi - \theta_L & \text{for } \theta_L > \pi/2,
\end{cases} \]

- With a transformation of the angles, the dimension is reduced to three free parameters.
- Each transformation remains three observables \(S_j, F_L \) and \(S_3 \).
- The observables
 \[P'_{i=4,5,6,8} = \frac{S_{i=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}, \]
 are considered to be largely free from form-factor uncertainties (J. High Energy Phys. 05 (2013) 137).
- Transverse polarization asymmetry
 \[A_T^{(2)} = \frac{2S_3}{(1 - F_L)}. \]
Angular Analysis of $B \rightarrow K^* \ell^+ \ell^-$ at Belle

- Data is divided in the q^2 bins.
- Signal and background fraction is obtained by fitting M_{bc} distribution.
- The data is split into a sideband and signal region.
- Shape of the background can be determined in the sideband region.
- Final fit in signal region for each transformation.