Flavor: Violation & Dipole Moments

DPF2019, Boston, MA, USA: Monday, July 29th, 2019

Jason D. Crnkovic

Scope of this talk:

What will not be discussed (*lots of great work going on, but not enough time to discuss it*):

- Fermilab muon EDM measurement (part of Muon g-2 Experiment)
- Muon g-2/EDM
 Experiment at J-PARC
- Electron dipole moments
- COMET at J-PARC
- Mu3e at PSI
- MEG II at PSI
- .

What will be discussed:

Fermilab

Why is charged lepton flavor violation interesting?

- Standard Model (SM) predicts charged lepton flavor violation (CLFV) at highly suppressed rates.
- An observation of CLFV would imply new physics.
- CLFV could potentially play a role in explaining the matter-antimatter asymmetry of the universe (leptogenesis).
- Quark and neutral lepton (neutrino) flavor violation has been observed.

Mu2e experiment will search for $\mu \rightarrow e$ **conversion.**

- Mu2e goal is to probe $R_{\mu e}$ at the level of ~8×10⁻¹⁷ (90% CL).
- 10⁴ improvement with respect to SINDRUM II !!!

[1] S. Giovannella, EPJ Web Conf. 179, 01003 (2018). doi:10.1051/epjconf/201817901003
[2] R. H. Bernstein and P. S. Cooper, Phys. Rept. 532, 27 (2013). doi:10.1016/j.physrep.2013.07.002 [arXiv:1307.5787 [hep-ex]]

Several potential mechanisms for enhancing $\mu \rightarrow e$ conversion.

 $\kappa \rightarrow$ Relative size of the 2 types of terms.

[1] A. de Gouvea and P. Vogel, Prog. Part. Nucl. Phys. 71, 75 (2013). doi:10.1016/j.ppnp.2013.03.006 [arXiv:1303.4097 [hep-ph]]

Mu2e is a high precision experiment.

Mu2e Experiment is composed of 3 superconducting

solenoid systems.

The graded magnetic fields suppress backgrounds, increase muon yield, and improve geometric acceptance of signal electrons.


```
~25 m
```

Production Solenoid (PS):

- Pulsed 8 GeV proton beam strikes a tungsten pion production target.
- Pions are captured by the graded magnetic field. Transport Solenoid (TS):
- Select low momentum negative muons (pions decay into muons).
- Reject high momentum negative particles & positive particles (absorber foils and collimators), as well as line-of-sight neutral particles (S-shape).

Detector Solenoid (DS):

- Create muonic atoms with an aluminum stopping target.
- Straw tracker detectors measure electron momenta and trajectories.
- Calorimeters measure energy, time, and particle ID.
- Cosmic ray veto detectors surround the detector solenoid.

Construction of the Mu2e Experiment is underway!

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Different ways of thinking about magnetic dipole

moments:

Classical Picture:

Quantum Picture:

Dirac Equation for EM potential:

$$\begin{bmatrix} i\gamma^{\mu} (\partial_{\mu} + ieA_{\mu}) - m \end{bmatrix} \psi = 0$$
• Spin-1/2 point particles

Larmor Precession (particle rest frame):

$$\frac{d\vec{s}}{dt} = \vec{\tau} = \vec{\mu} \times \vec{B} = g\left(\frac{q}{2m}\right)\vec{s} \times \vec{B}$$

Muon anomaly provides an important test of the

[2] A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D 97, no. 11, 114025 (2018). doi:10.1103/PhysRevD.97.114025 [arXiv:1802.02995 [hep-ph]]

Muon g-2 Experiment measures the anomalous spin precession frequency.

Muon anomaly is obtained from 5 numbers.

Fermilab Experiment a_u total error goal is 140 ppb

Muon anomaly is obtained from 5 numbers.

[1] P. J. Mohr, D. B. Newell and B. N. Taylor, Rev. Mod. Phys. 88, no. 3, 035009 (2016) doi:10.1103/RevModPhys.88.035009 [arXiv:1507.07956 [physics.atom-ph]].

Fermilab Muon g-2 Experiment:

- Inflector injects muons into ring while minimizing disturbance to B-field
- 3 magnetic kickers "kick" the muons onto the storage orbit
- 4 pairs of electric quads provide vertical focusing

Fermilab Muon g-2 Experiment: 3 central fiber traces from 180 degree x-profile monitor June 2017 commissioning data 13 mm separation 13 mm separation $\sim\sim\sim\sim\sim$ Fermilab Muon g-2 Collaboration Production Run 1, 22-25 Apr 2018 PRELIMINARY, no quality cut 0 80 90 time modulo 100 us 180° and 270° fiber profile beam **calorimeters** monitors (special runs; degrades beam) 2 straw tracker stations measure decay positron trajectory, which provides beam profile reconstruction 24 calorimeters detect decay positron arrival time and energy **Storage Ring** 16

Status of the Fermilab Muon g-2 Experiment:

- Finished Run-1 & Run-2; looking at data!
- Currently in a Summer shutdown preparing for Run-3.
- Goal of publishing Run-1 results by the end of the year!

Expect ~1.8×BNL Run-2 dataset vs. ~1.4×BNL

Run-1 ω_a analysis:

Example fit function:

$$N(t) = N_0 \Lambda(t) N_{cbo}(t) N_{vw}(t) e^{-t/\tau}$$
$$\cdot \left\{ 1 + A_0 \cdot A_{cbo}(t) \cdot \cos\left[\omega_a(R) \cdot t + \phi_0 + \phi_{cbo}(t)\right] \right\}$$

Data are hardware blinded.

- No collaborator knows the clock tick frequencies (2 external people know).
- Each analyzer has their own private software frequency offset.

Run-1 ω_a analysis:

Example fit function:

$$N(t) = N_0 \Lambda(t) N_{cbo}(t) N_{vw}(t) e^{-t/\tau}$$
$$\cdot \left\{ 1 + A_0 \cdot A_{cbo}(t) \cdot \cos\left[\omega_a(R) \cdot t + \phi_0 + \phi_{cbo}(t)\right] \right\}$$

• Data are hardware blinded.

- No collaborator knows the clock tick frequencies (2 external people know).
- Each analyzer has their own private software frequency offset.
 - Private software offsets removed for 1 of the data subsets (practice exercise & early verification).
- Run-1 has 4 primary data subsets with different Kicker & Electrostatic Quadrupole settings.
- 6 groups fitting the frequency with multiple methods.
- 3 independent event reconstruction efforts.
 - 2 methods fit individual (E,t), but with very different approaches for how the spatial information is used.
 - Q-method is a new charge integrating technique (unique to FNAL Experiment).
- Data is gain & pileup corrected, binned, and randomized with respect to the cyclotron frequency.
- Full fit functional forms are producing excellent χ^2 and clean residuals.

Run-1 < ω_p > (B-field) analysis:

Probe

‡ Fermilab

Use 400 fixed probes (outside of the vacuum chambers) to interpolate between trolley runs.

- 2 independent teams making good progress.
 - Data are hardware blinded.
 - Results are still software blinded, except for 1 of the data subsets.
- Preliminary Run-1 estimate.

B-field the trolley measures is not the B-field free protons experience.

- B-field perturbations due to trolley probe materials, electronics, enclosures (need a calibration)
 - Compare trolley probes to the plunging probe: plunging probe B-field perturbations are well measured.
- 2 independent analyses have produced preliminary results.
 - Presently examining field gradients, alignment of trolley/plunging probe active volumes, and impact of field oscillations.

Compare plunging and absolute calibration probes.

- 2 types of absolute calibration probes
 - Spherical shaped H₂O based
 - Polarized ³He based
- BNL Experiment only used H₂O based absolute calibration probe.

Muon g-2 Experiment final error goals:

ω_a systematic uncertainty summary[1].

Category	BNL [ppb]	FNAL Goal [ppb]
Gain Changes	120	20
Pileup	80	40
Lost Muons	90	20
СВО	70	< 30
E-field & Pitch Corrections	50	30
Total (Quadrature Sum)	190	70

a_u uncertainty summary[1,2].

Category	BNL [ppb]	FNAL Goal [ppb]
Total Statistical Uncertainty	460	100
Total Systematic Uncertainty	280*	100
Total (Quadrature Sum)	540*	140

* The net systematic is across 3 running periods.

$<\omega_{o}>$ (B-field) systematic uncertainty summary[1].

Category	BNL [ppb]	FNAL Goal [ppb]
Absolute Field Calibration	50	35
Trolley Probe Calibrations	90	30
Trolley Measurements Of B ₀	50	30
Fixed Probe Interpolation	70	30
Muon Distribution	30	10
Time-dependent External Magnetic Fields	-	5
Others (Collective Smaller Effects)	100	30
Total (Quadrature Sum)	170	70

J. Grange *et al.* [Muon g-2 Collaboration], arXiv:1501.06858 [physics.ins-det].
 M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

Stay tuned ...

- Mu2e Experiment is currently under construction.
- Mu2e expects to start taking data in 2023.
- Muon g-2 Experiment has finished Run-1 and Run-2 data collection.
- Muon g-2 is in a summer shutdown and preparing for Run-3.
- Muon g-2 has the goal of publishing a Run-1 physics result by the end of 2019.

Backup

Trackers and calorimeters are used to reconstruct electron kinematics.

- 2 annular disks separated by half a track wavelength gives ~90% acceptance.
- Each disk contains ~674 scintillating CsI crystals readout with SiPMs
- Resolution ~5% at 105 MeV and ~1 ns.

- 5mm diameter straw drift tubes made with mylar-epoxy-Au-Al walls and Au-plated W wire.
- Operates in a vacuum with Ar/CO2 gas at ~1.45 kV.
- Ultra low mass system to minimize multiple scattering.
- Highly segmented to handle high rates.
- Resolution less than 200 keV/c at 105 MeV.
- 18 stations each having 12 × 120° panels = 216 panels → ~21,000 straws.
- Nearly blind to all DIO background (only electrons greater than 90MeV get reconstructed).

Standard Model zoo of particles:

Standard Model (Quantum + Special Relativity)

Comparison of the charged leptons:

$ au_e$	∞	-
$ au_{\mu}$	2.1969811 ± 0.0000022 μs	1.0 ppm
$ au_{ au}$	(2.903 ± 0.005) × 10 ⁻⁷ µs	0.17 %
m _e	0.5109989461 ± 0.000000031 MeV	6.1 ppb
m_{μ}	105.6583745 ± 0.0000024 MeV	23 ppb
$m_{ au}$	1776.86 ± 0.12 MeV	68 ppm
a _e	0.00115965218091 ± 0.0000000000026	0.22 ppb
a_{μ}	0.0011659209 ± 0.000000006	0.51 ppm
α _τ	> -0.052 and < 0.013 CL=95.0%	-

Mode	Fraction (Γ_i / Γ)
$\mu^{-} \rightarrow e^{-} \overline{v}_{e} v_{\mu}$	≈ 1
$\mu^{-} \rightarrow e^{-} \overline{v}_{e} v_{\mu} \gamma$	$(6.0 \pm 0.5) \times 10^{-8}$
$\mu^{-} \rightarrow e^{-} \overline{v}_{e} v_{\mu} e^{+} e^{-}$	$(3.4 \pm 0.4) \times 10^{-5}$

Mode	Fraction (Γ_i / Γ)
$\tau^{-} \rightarrow \mu^{-} \overline{\nu}_{\mu} \nu_{\tau}$	17.39 ± 0.04 %
$\tau \rightarrow e^- \overline{v}_e v_\tau$	17.82 ± 0.04 %
$\tau \rightarrow \pi v_{\tau}$	10.82 ± 0.05 %
$\tau \rightarrow K^{-} v_{\tau}$	0.696 ± 0.010 %

C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.

Non-perturbative QCD dominates SM muon g-2

[1]

[1] F. Jegerlehner, arXiv:1804.07409 [hep-ph].

Work continues on improving the precision of

28

A. Keshavarzi, D. Nomura and T. Teubner, Phys. Rev. D 97, no. 11, 114025 (2018) doi:10.1103/PhysRevD.97.114025 [arXiv:1802.02995 [hep-ph]].
 Workshop on hadronic vacuum polarization contributions to muon g-2, KEK, Tsukuba, Japan, Feb. 12th to 14th (2018):

Direct Scan Method:

e. q hadrons e

Initial State Radiation (ISR) method: (suitable for Phi- and B-factories)

e . q hadrons q **QED process that lowers** P *Y***ISR** effective CM energy

BNL muon anomaly measurement and SM prediction

differ by greater than 3σ .

u and *d* contributions

[1]

Work continues with LQCD $a_{\mu}^{had. LO VP}$ calculations

- Historical e^+e^- and τ data discrepancy resolved by including effects such as $\rho - \gamma$ mixing (important isospin breaking effects): DHMZ10 ($e^+e^- + \tau$) does not have $\rho - \gamma$ mixing correction
- BDDJ15[#] excludes while BDDJ15^{*} includes BABAR $\pi^+\pi^-$ data
- If central values do not move, achieving Fermilab error • goal will lead to a greater than 5σ difference 30

[1] F. Jegerlehner, EPJ Web Conf. 166, 00022 (2018) doi:10.1051/epiconf/201816600022 [arXiv:1705.00263 [hep-ph]].

Fermilab Muon g-2 Experiment:

- Start with a proton bunch
- Protons hit target to produce pions
- Delivery Ring extracts protons and allows for remaining pions to decay to muons

Fermilab Muon g-2 Collaboration ...

Domestic Universities

- Boston
- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis
- Virginia
- Washington

National Labs

- Argonne
- Brookhaven
- Fermilab

China

Shanghai

Germany

Dresden

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste
- Udine

Korea

- CAPP/IBS
- KAIST

Russia

- Budker/Novosibirsk
- JINR Dubna

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- University College London
- Manchester

\$Fermilab

 \mathbf{H}

Experiment uses a weak focusing muon storage ring.

Fermilab beamline decays away most of the pions.

Straw tracker detectors measure the storage ring muon beam profile when taking physics data.

The above June 2017 commissioning data has large proton contamination: 60 p: 4 π : 1 μ

Track Time % 100 µs [µs]

Segmented calorimeters provide spatial resolution that can be used to separate positron hits.

Trolley is used to measure muon storage region magnetic field during data collection.

Rough Shimming Results

Fixed probes on vacuum chambers

Trolley with matrix of 17 NMR probes

Trolley can be pulled around storage ring when beam is not being delivered.

R. Hong

Run-1 ω_a analysis:

Example fit function:

$$N(t) = N_{0}\Lambda(t)N_{cbo}(t)N_{vw}(t)e^{-t/t}$$
$$\cdot \left\{1 + A_{0}\cdot A_{cbo}(t)\cdot \cos\left[\omega_{a}(R)\cdot t + \phi_{0} + \phi_{cbo}(t)\right]\right\}$$

Fiber profile beam monitors (fiber harps) study the storage ring beam dynamics.

3 central fiber traces from x-profile monitor at 180 degree position.

Fermilab Muon g-2 Experiment:

- M5 magnetic quads do final focusing before injection into ring
- Inflector injects muons into ring while minimizing disturbance to B-field
- 3 magnetic kickers "kick" the muons onto the storage orbit
- Electric quads provide weak vertical focusing
- Quads scrape beam against collimators at early times

Storage Ring

[1]

Status of the Fermilab Muon g-2 Experiment:

- Finished Run-1 & Run-2; looking at data!
- Currently in a Summer shutdown preparing for Run-3.
- Goal of publishing Run-1 results by the end of the year!

Muon electric dipole moment (EDM) will tilt the spin precession plane.

[1]

- Muon EDM will violate P, T, and CP symmetries.
- Experiment only measures one precession frequency!
- To a good approximation, $\vec{\omega}_a$ is parallel to \vec{B} and $\vec{\omega}_\eta$ points radially in the storage ring.
- Straw Tracker Detectors can measure a tilt in the spin precession plane.
 - From a radial or longitudinal magnetic field component.
 - From a muon EDM.
 - A tilt in the precession plane leads to an up-down asymmetry in the positron angle.

B-field contribution dominates over E-field contribution in storage ring.

$$\vec{\omega} = \vec{\omega}_a + \vec{\omega}_\eta \approx -\frac{q}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] - \eta_\mu \frac{q}{2m} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right)$$

[1] J. Grange et al. [Muon g-2 Collaboration], arXiv:1501.06858 [physics.ins-det].