Current Cosmological Constraints: A Tale of Two Tensions

Jonathan Blazek

Laboratory of Astrophysics, EPFL DES Collaboration

Combining and comparing probes

Different measurements of the expansion rate, or age, of the Universe do not agree

Different measurements of matter fluctuations *may* not agree

NASA/WNAP Science Team

Basic observables

Tensions?

Different measurements of expansion rate H_0 , equivalently the age of the Universe, do not agree

Growth of structure

Different measurements of matter fluctuations S_8 may not agree

Cosmic Microwave Background

Cosmic Microwave Background

Planck Collaboration, 2018

Cosmic Microwave Background

	_
	ſ
	2
and the second	C
and the second second second second	1
	I
1	au
	4
	11
and the second second second	
	n
	S
	-
	<u> </u>
	C
the second states and the second s	
	P
	0
	0
	S
	7
	٤.
	1
	74
	ľ

Parameter	Plik
$\Omega_{\rm b} h^2$	0.02237 ± 0.00015
$\Omega_{\rm c} h^2$	0.1200 ± 0.0012
$100\theta_{\rm MC}$	1.04092 ± 0.00031
au	0.0544 ± 0.0073
$\ln(10^{10}A_{\rm s})$	3.044 ± 0.014
$n_{\rm s}$	0.9649 ± 0.0042
$\Omega_{\rm m} h^2$	0.1430 ± 0.0011
H_0 [km s ⁻¹ Mpc ⁻¹]	67.36 ± 0.54
Ω_{m}	0.3153 ± 0.0073
Age [Gyr]	13.797 ± 0.023
$\sigma_8 \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	0.8111 ± 0.0060
$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$.	0.832 ± 0.013
Z _{re}	7.67 ± 0.73
$100\theta_*$	1.04110 ± 0.00031
$r_{\rm drag}$ [Mpc]	147.09 ± 0.26

Planck Collaboration, 2018

Mapping the full volume

Galaxy surveys

 κ_E ; 0.2 < z < 1.3 lensing shear/convergence

galaxies or other tracers

DES Year 1: Elvin-Poole+ 2018; Chang+ 2018

Sloan Digital Sky Survey

Fig: SDSS

2.5m Apache Point telescope, New Mexico

Sloan Digital Sky Survey

Fig: SDSS

 $\langle \delta_{\text{gal}}(\mathbf{x})\delta_{\text{gal}}(\mathbf{x}+\mathbf{r})\rangle = \xi_{\text{gal}}(\mathbf{r}) \longleftrightarrow P_{\text{gal}}(k) = \langle \delta_{\text{gal}}^2(\mathbf{k})\rangle$

The BAO standard ruler

Baryon Oscillation Spectroscopic Survey

The BAO standard ruler

extended Baryon Oscillation Spectroscopic Survey

eBOSS quasars: Ata+ 2018

The BAO standard ruler

Fig: SDSS, A. Ross 16

Dark Energy Survey

- DECam (520 Mpix) on 4m Blanco Telescope, Cerro Tololo, Chile
- 1/8 of sky (5000 deg² Year 1 = 1300 deg²)
- 6 year mission, 525 nights, completed Jan 2019
- grizY filters (photometric redshifts)
- 300 million galaxies (0 < z < 2) >100 million with WL shapes

Combining probes

Matter fluctuations

DES Collaboration

2018

19

Consistency?

Park & Rozo 2019

Hubble Constant

Hubble 1929

 $t_H = 1/H_0$

Sound Horizon

DES Collaboration 2018

Lensing time delays

Wong+ 2019 (HOLiCOW)

Lensing time delays

Wong+ 2019 (HOLiCOW)

"Tensions between the Early and the Late Universe"

Verde+ 2019

Fig: V. Bonvin

"Tensions between the Early and the Late Universe"

Fig: V. Bonvin

Concordance Cosmology?

Park & Rozo 2019

What's next?

Euclid, WFIRST

Simons Obs, CMB-S4

LSST (VRST?) 29

Summary

Combining and comparing multiple probes provides the most powerful tests of the cosmological model

Tensions in the expansion rate (H₀) and matter fluctuations (S₈) hint at potential new physics

The future is bright...

Extra slides

Ho tension: new physics?

Riess+ 2019

Self-interacting neutrinos

Kreisch+ 2019

Modeling and inference $L(\mathbf{D}|\mathbf{p}) \propto \exp\left(-\frac{1}{2}\left[\left(\mathbf{D} - \mathbf{M}(\mathbf{p})\right)^{T}\mathbf{C}^{-1}(\mathbf{D} - \mathbf{M}(\mathbf{p}))\right]\right)$

- Cosmological signal, including nonlinearities
- Observational effects: shear measurement, atmosphere
- Astrophysics: "baryonic" effects, galaxy bias and alignments
- Full covariance (~450 data points)
- Blind analysis
- Modeling and methods: Krause+ 2017, MacCrann+ 2018, Blazek+ 2017, ...

KiDS + DES weak lensing

Joudaki+ 2019

KiDS + DES re-analysis Joudaki+ 2019

LSS/lensing observables

Omori+ 2018; DES+SPT 2018

DES + SPT lensing

DES + SPT Collaborations 2018

Galaxy alignments

Blazek+ 2017; Samuroff, Blazek+ 2018 (DES Collaboration) 40

Galaxy alignments

ll Galaxies arly-Type ate-Type

2017; Samuroff, Blazek+ 2018 (DES Collaboration) 41

Consistency?

DES Collaboration 2018

H₀ tension

Freedman+ 2019

What's next?

DES Year 1

- Calibrated shapes for weak lensing (2 pipelines). 26 million source galaxies used
- Photometric redshifts for tomography
- 660k redMaGiC galaxies as lenses
- galaxy clusters, SNe, BAO

DES Y1 (~1300 deg²)

DES Collaboration 2018, Elvin-Poole+ 2018, Troxel+ 2018, Prat, Sanchez+ 2018

 θ (arcmin)

θ

The DES Collaboration

~400 scientists; US support from DOE & NSF

Fermilab, UIUC/NCSA, University of Chicago, LBNL, NOAO, University of Michigan, University of Pennsylvania, Argonne National Lab, Ohio State University, Santa-Cruz/SLAC/ Stanford, Texas A&M

Cosmological Probes

redshift-space distortions

SZ

Ly-alpha forest galaxy clusters galaxy lensing + clustering 21cm cosmic shear CMB lensing CMB BAO supernovae lensing time delays distance ladder

geometry/expansion