Frank Petriello

2019 DPF meeting July 31, 2019

Outline

- The why: why do we need perturbative QCD and what have we learned from it so far in the LHC era?
- •The how: review of the theoretical framework
- •The details:
 - Precision jet cross sections and future directions in higherorder calculations
 - Advances in PDFs: theory uncertainties and lattice input
 - Logarithmic accuracy of parton shower simulations
 - SMEFT and global fitting of precision LHC data

Focus on results from last two years; apologies for omissions!

Why pQCD?

Signal strength

Indispensable in understanding measurements at the LHC and whether they agree with the Standard Model. Poised to become more so with higher integrated luminosity

Why pQCD?

Even with N³LO pQCD prediction (Anastasiou et al. 1602.00695) theory uncertainties substantial!

QCD tools needed to understand sometimes subtle kinematic differences between background and signal in BSM searches

Why pQCD?

New ideas: Understanding of QCD has led to new tools to search for physics beyond the SM, such as jet substructure

Key principle: factorization of long and short distance physics

Key principle: factorization of long and short distance physics

Key principle: factorization of long and short distance physics

QCD prediction checklist:

Partonic cross section to high enough order in α_s
Parton distribution functions
The value of α_s
For some measurements, parton showers to tie together the hard interaction scale and hadronization at Λ_{QCD}

Key principle: factorization of long and short distance physics

Covered here

NLO

NNLO

Major recent themes: NNLO for $2 \rightarrow 2$, especially with finalstate jets, and detailed comparisons to experimental data

Di-jet production

• Numerous applications: searches for new physics in the form of new resonances or contact interactions; measurements of α_s , high-x gluon

V+jet production

V+jet production

Future directions at NNLO

• Current topic: 2-loop amplitudes for $2 \rightarrow 3$ processes. Currently an active subject of study, with initial results for 3-jet amplitudes

appearing (Gehrmann, Henn, Lo Presti (2016); Badger, Bronnum-Hansen, Hartanto, Peraro (2017-2019); Abreu, Febres Cordero, Ita, Page, Zeng (2017-2019); Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zoia (2019); ...)

• Current topic: multi-scale 2-loop amplitudes with massive internal particles, relevant for Higgs, top, vector boson production. New mathematical structures beyond multiple polylogarithms appear (Remiddi, Tancredo (2016); Bonciani et al (2016); Weinzierl et al (2016-2019); Ablinger et al (2017); Broedel, Duhr, Dulat, Marzucca, Penante, Tancredi (2019); ...)

Multi-scale 2-loop: Higgs pT spectrum

 Critical to look for BSM effects in the Higgs sector, and to break coupling degeneracies that appear given only the total cross section:

Advances in PDFs

• Past few years have seen many updates to global PDF determinations ABMP: new W, Z, top data included; updated α_s =0.1145(9) (1701.05838) CTEQ: new technique to visualize impact of data sets in fits (1803.02777) MMHT: study of PDF sensitivity to jet production data (1711.05757) NNPDF: first time incorporating Z-pT and top pair data (1706.00428) Additional studies on strangeness, charm; methodology improvements

Higgs production: gluon fusion

Good agreement between different fits with estimated uncertainties on ggH approaching one percent

Theory uncertainties in PDFs

 New: extend PDF uncertainties to include theoretical uncertainties from the underlying process from which they're fit, not just experimental errors NNPDF 1905.04311, 1906.10698

Theory uncertainties in PDFs

 New: extend PDF uncertainties to include theoretical uncertainties from the underlying process from which they're fit, not just experimental errors NNPDF 1905.04311, 1906.10698

Preliminary pheno implications:

ggH: few per-mille increase of PDF uncertainty, <1% cross section shift VBF: PDF uncertainty almost unchanged, 1% upwards cross section shift

PDFs from lattice QCD

• New idea: x-dependent PDFs can be obtained directly from lattice QCD calculations using effective field theory to relate them to lattice-calculable quasi-PDFs or pseudo-PDFs (Ji 1305.1539; Radyushkin 1705.01488)

Proof-of-principle lattice determinations exist (see Lin et al., 1711.07916 for a review)

PDFs from lattice QCD

• New idea: x-dependent PDFs can be obtained directly from lattice QCD calculations using effective field theory to relate them to lattice-calculable quasi-PDFs or pseudo-PDFs (Ji 1305.1539; Radyushkin 1705.01488)

δ(u) @ Q²=4 GeV², NNPDF3.1

Progress on parton showers

• Parton shower Monte Carlo event generators: bridge the hard interaction and the Λ_{QCD} -scale hadronization, resum logs of disparate scales in a flexible way applicable to multiple observables

Past decade: improve description of hard interaction in parton showers through matching (more loops) or merging (more legs)

Systematic study of shower accuracy

 New: a systematic framework to study the accuracy of the shower itself Dasgupta, Dreyer, Hamilton, Monni, Salam 1805.09327

Two criteria:

- Do they reproduce known singular limits of multi-parton amplitudes?
- Do they match known analytic logarithmic resummation formulae?

Example: at leading N_C, 100%
mismatches in double-soft region for p_T-ordered showers (DIRE, PYTHIA); appears at NLL

Potential impact on precision measurements, jet substructure; stay tuned!

Future of precision QCD at the LHC

 LHC is a precision machine; measurements approaching few-percent level or better in numerous channels

Legacy of the global EW fit

 Lasting legacy of indirect precision measurements from LEP and other experiments teaching us about high-scale physics: light Higgs, SUSY, technicolor

NLO QCD global fit of LHC observables

• New direction: global fits of LHC data to the Standard Model Effective Theory (SMEFT). The study of SMEFT will be a legacy of the LHC era, like the global EW fit was for the LEP era

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)}$$

Λ=scale of underlying UV theory

Example: global study of top quarks with NLO QCD leads to limits on A up to 1.5 TeV

Stay tuned!

Conclusions

Could only scratch the surface of the work being done

- Higher-order pQCD, resummation, jets: Felix Ringer, Monday afternoon QCD parallel
- Jet substructure: Yang-Ting Chien, Matt LeBlanc, Christine McLean; Tuesday afternoon QCD parallel
- Precision SMEFT analyses: Daniel Wiegand, Tuesday afternoon BSM parallel; Junping Tian, Tuesday afternoon Higgs parallel

Thanks for your attention!