Frontiers of perturbative QCD

Frank Petriello

2019 DPF meeting
July 31, 2019
Outline

• **The why:** why do we need perturbative QCD and what have we learned from it so far in the LHC era?

• **The how:** review of the theoretical framework

• **The details:**
 • Precision jet cross sections and future directions in higher-order calculations
 • Advances in PDFs: theory uncertainties and lattice input
 • Logarithmic accuracy of parton shower simulations
 • SMEFT and global fitting of precision LHC data

Focus on results from last two years; apologies for omissions!
Why pQCD?

Indispensable in understanding measurements at the LHC and whether they agree with the Standard Model. Poised to become more so with higher integrated luminosity.
Why pQCD?

Even with N^3LO pQCD prediction (Anastasiou et al. 1602.00695) theory uncertainties substantial!
Why pQCD?

QCD tools needed to understand sometimes subtle kinematic differences between background and signal in BSM searches.
Why pQCD?

New ideas: Understanding of QCD has led to new tools to search for physics beyond the SM, such as jet substructure
Structure of QCD at the LHC

Key principle: factorization of long and short distance physics
Structure of QCD at the LHC

Key principle: factorization of long and short distance physics

\[
\sigma_{h_1 h_2 \rightarrow X} = \int d x_1 d x_2 \left\{ \frac{f_{h_1 / i}(x_1; \mu_F^2)}{d x_1} \frac{f_{h_2 / j}(x_2; \mu_F^2)}{d x_2} \right\} \cdot \hat{\sigma}_{i j \rightarrow X}(x_1, x_2, \mu_F^2, \{q_k\}) + \mathcal{O}\left(\frac{\Lambda_{QCD}}{Q}\right)^n
\]

factorization scale

long distance: 1/GeV
short distance: 1/TeV

Asymptotic freedom

\[
\hat{\sigma} = \sigma^{\text{Born}} \left(1 + \frac{\alpha_s}{2\pi} \sigma^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 \sigma^{(2)} + \left(\frac{\alpha_s}{2\pi}\right)^3 \sigma^{(3)} + \ldots\right)
\]

measure
extract from data
calculate
small for many LHC observables

LO predictions
NLO corrections
NNLO corrections
NNNLO corrections
Structure of QCD at the LHC

Key principle: factorization of long and short distance physics

- **Long distance:** 1/GeV
- **Short distance:** 1/TeV

\[
\sigma_{h_1 h_2 \rightarrow X} = \int dx_1 dx_2 \left(\hat{f}_{h_1/i}(x_1; \mu_F^2) \hat{f}_{h_1/j}(x_2; \mu_F^2) \right) \hat{\sigma}_{ij \rightarrow X}(x_1, x_2, \mu_F^2, \{q_k\}) + O\left(\frac{\Lambda_{QCD}}{Q}\right)^n
\]

PDFs

Partonic cross section

Power corrections

QCD prediction checklist:

- Partonic cross section to high enough order in α_s
- Parton distribution functions
- The value of α_s
- For some measurements, parton showers to tie together the hard interaction scale and hadronization at Λ_{QCD}
Structure of QCD at the LHC

Key principle: factorization of long and short distance physics

\[
\sigma_{h_1 h_2 \rightarrow X} = \int dx_1 dx_2 \left(f_{h_1/i}(x_1; \mu_F^2) \right) f_{h_1/j}(x_2; \mu_F^2) \hat{\sigma}_{ij \rightarrow X}(x_1, x_2, \mu_F^2, \{q_k\}) + O\left(\frac{\Lambda_{QCD}}{Q}\right)^n
\]

*factorization scale

long distance: 1/GeV
short distance: 1/TeV

Covered here

- Partonic cross section to high enough order in α_s
- Parton distribution functions
- The value of α_s
- For some measurements, parton showers to tie together the hard interaction scale and hadronization at Λ_{QCD}
Many examples show that:

LO: rough estimate only
NLO: first quantitative estimate
NNLO: needed for precision!
Major recent themes: NNLO for 2→2, especially with final-state jets, and detailed comparisons to experimental data
Di-jet production

- **Numerous applications**: searches for new physics in the form of new resonances or contact interactions; measurements of α_s, high-x gluon

Large NNLO QCD corrections at high transverse momentum

Large electroweak corrections at high transverse momentum

Markedly improved description of data when NNLO is included

Gehrmann-De Ridder et al. 1905.09047
V+jet production

ATLAS

- $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$
- anti-k_T jets, $R = 0.4$
- $p_T^{\text{jet}} > 30 \text{ GeV}, |\eta^{\text{jet}}| < 4.4$

CMS

- $\sqrt{s} = 13 \text{ TeV}$
- Anti-k_T ($R = 0.4$) jets
- $p_T^{\text{jet}} > 30 \text{ GeV}, |\eta^{\text{jet}}| < 2.4$
- $Z/\gamma^{*} \rightarrow \ell^{+}\ell^{-}, N_{\text{jets}} \geq 1$

N_{jets} NNLO: Boughezal et al. 2015-2017
Good agreement between NNLO and data for a wide array of processes, observables, energies
Future directions at NNLO

• **Current topic**: 2-loop amplitudes for $2 \rightarrow 3$ processes. Currently an active subject of study, with initial results for 3-jet amplitudes appearing (Gehrmann, Henn, Lo Presti (2016); Badger, Bronnum-Hansen, Hartanto, Peraro (2017-2019); Abreu, Febres Cordero, Ita, Page, Zeng (2017-2019); Badger, Chicherin, Gehrmann, Heinrich, Henn, Peraro, Wasser, Zhang, Zoia (2019); …)

• **Current topic**: multi-scale 2-loop amplitudes with massive internal particles, relevant for Higgs, top, vector boson production. New mathematical structures beyond multiple polylogarithms appear (Remiddi, Tancredo (2016); Bonciani et al (2016); Weinzierl et al (2016-2019); Ablinger et al (2017); Broedel, Duhr, Dulat, Marzucca, Penante, Tancredi (2019); …)
Multi-scale 2-loop: Higgs p_T spectrum

- Critical to look for BSM effects in the Higgs sector, and to break coupling degeneracies that appear given only the total cross section:

$$\Delta \mathcal{L} = -c_t \frac{m_t}{\tau} + \kappa g \frac{\alpha_s}{12\pi} \frac{h}{\tau} \frac{G_{\mu\nu} G^{\alpha,\mu\nu}}{v}$$

$$\frac{\sigma(c_t, \kappa g)}{\sigma_{SM}} \approx (c_t + \kappa g)^2$$

Numerical evaluation of the necessary 2-loop integrals using sector decomposition

Previous best approximation got shape correct; exact NLO larger by 6-8%

Jones, Kerner, Luisoni 1802.00349

NLO for finite m_t now known

Binoth, Heinrich hep-ph/0004013

LHC 13 TeV
PDF4LHC15 NLO
$\mu = \frac{H_T}{2}$

ratio to LO Full
ratio to NLO FT$_{\text{approx}}$
Advances in PDFs

- Past few years have seen many updates to global PDF determinations
 - **ABMP**: new W, Z, top data included; updated $\alpha_s=0.1145(9)$ (1701.05838)
 - **CTEQ**: new technique to visualize impact of data sets in fits (1803.02777)
 - **MMHT**: study of PDF sensitivity to jet production data (1711.05757)
 - **NNPDF**: first time incorporating Z-p_T and top pair data (1706.00428)

Additional studies on strangeness, charm; methodology improvements

Good agreement between different fits with estimated uncertainties on ggH approaching one percent
Theory uncertainties in PDFs

New: extend PDF uncertainties to include theoretical uncertainties from the underlying process from which they’re fit, not just experimental errors.

NNPDF 1905.04311, 1906.10698

NLO validation:

- Only slight increase of PDF errors; theory errors relax some tensions between data sets.
- Central value moves closer to NNLO fit.
Theory uncertainties in PDFs

- **New:** extend PDF uncertainties to include theoretical uncertainties from the underlying process from which they’re fit, not just experimental errors

NNPDF 1905.04311, 1906.10698

Preliminary pheno implications:

ggH: few per-mille increase of PDF uncertainty, <1% cross section shift

VBF: PDF uncertainty almost unchanged, 1% upwards cross section shift
PDFs from lattice QCD

- **New idea**: x-dependent PDFs can be obtained directly from lattice QCD calculations using effective field theory to relate them to lattice-calculable quasi-PDFs or pseudo-PDFs (Ji 1305.1539; Radyushkin 1705.01488)

\[
\tilde{q}(x, \Lambda, p_z) = \int_{-1}^{1} \frac{dy}{|y|} Z \left(x, \frac{\mu}{y}, \frac{\Lambda}{p_z} \right) q(y, Q^2) + \mathcal{O} \left(\frac{\Lambda_{\text{QCD}}^2}{p_z^2}, \frac{M^2}{p_z^2} \right)
\]

- quasi-PDF from lattice
- calculable matching coefficient
- regular PDF

Proof-of-principle lattice determinations exist (see Lin et al., 1711.07916 for a review)
PDFs from lattice QCD

- **New idea**: x-dependent PDFs can be obtained directly from lattice QCD calculations using effective field theory to relate them to lattice-calculable quasi-PDFs or pseudo-PDFs (Ji 1305.1539; Radyushkin 1705.01488)

Sea-quark uncertainties in the high-x region may be reduced by up to 40%; this region important for high-mass BSM searches

Stay tuned!
Progress on parton showers

- **Parton shower Monte Carlo event generators:** bridge the hard interaction and the Λ_{QCD}-scale hadronization, resum logs of disparate scales in a flexible way applicable to multiple observables.

Past decade: improve description of hard interaction in parton showers through **matching** (more loops) or **merging** (more legs).
New: a systematic framework to study the accuracy of the shower itself. Dasgupta, Dreyer, Hamilton, Monni, Salam 1805.09327

Two criteria:

- Do they reproduce known singular limits of multi-parton amplitudes?
- Do they match known analytic logarithmic resummation formulae?

Example: at leading N_C, 100% mismatches in double-soft region for p_T-ordered showers (DIRE, PYTHIA); appears at NLL

Potential impact on precision measurements, jet substructure; stay tuned!
Future of precision QCD at the LHC

- LHC is a precision machine; measurements approaching few-percent level or better in numerous channels
Legacy of the global EW fit

- Lasting legacy of indirect precision measurements from LEP and other experiments teaching us about high-scale physics: light Higgs, SUSY, technicolor.
NLO QCD global fit of LHC observables

New direction: global fits of LHC data to the Standard Model Effective Theory (SMEFT). The study of SMEFT will be a legacy of the LHC era, like the global EW fit was for the LEP era.

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)}$$

\(\Lambda\) = scale of underlying UV theory

SMEFit analysis of top quark sector

Example: global study of top quarks with NLO QCD leads to limits on \(\Lambda\) up to 1.5 TeV

Stay tuned!
Conclusions

• Could only scratch the surface of the work being done

• Higher-order pQCD, resummation, jets: Felix Ringer, Monday afternoon QCD parallel

• Jet substructure: Yang-Ting Chien, Matt LeBlanc, Christine McLean; Tuesday afternoon QCD parallel

• Precision SMEFT analyses: Daniel Wiegand, Tuesday afternoon BSM parallel; Junping Tian, Tuesday afternoon Higgs parallel

Thanks for your attention!