Selected recent results in hadronic charm decays at ₿€5Ⅲ

Hajime Muramatsu University of Minnesota

Hajime Muramatsu

DPF 2019 JUL/2019 3

BEPC II and BESIII

BEPC II (Beijing Electron-Positron Collider II)

- Double ring collider.
- Operating since 2008.
- E_{beam} = 1-2.3 GeV. Optimal @ 1.89 GeV.

- Can fill up to 93 bunches in each ring w/ max current of 0.9A.
- Designed luminosity = 1×10³³ cm⁻²s⁻¹ was achieved in April 2016!

BESIII detector

- A powerful general purpose detector.
- Excellent neutral/charged particle detection/identification with a large coverage.
- Precision tracking
- ✓ Csl calorimeter
- ✓ PID via dE/dx & Time of Flight

Typical analysis method to measure BF

- In our sample, $D_{(s)}$ mesons (and Λ_c) are produced in pair:
 - @ E_{cm} = 3773 MeV : e⁺e⁻ → DD̄
 - @ $E_{cm} = 4178$ MeV : $e^+e^- \rightarrow D_s^*D_s$ (subsequently $D_s^* \rightarrow (\gamma/\pi^0) D_s$)
 - @ E_{cm} = 4600 MeV : e⁺e⁻ → Λ_cΛ̄_c.
- Reconstruct one of the D_(s) (tag),
 you know there must be the other D_(s) (signal),
 allowing measurements of absolute BFs,
 without the knowledge of data size or N_D produced.

I.e., $BF(D_s \rightarrow KK\pi) = [B(D_s \rightarrow tag) \times BF(D_s \rightarrow KK\pi)]/BF(D_s \rightarrow tag)$ = [Double Tag yields]/[Single Tag yields].

Systematics associated with the reconstruction of $D_s \rightarrow tag$ also tend to be canceled in this ratio.

Or one could solve for N_D produced

- In e⁺e⁻ → DD̄ events, where D → X and D̄ → Y, let BF(D → X) = N_x/(ε_x·N_{DD̄}) : Single Tag (ST) BF(D̄ → Y) = N_y/(ε_y·N_{DD̄}) : Single Tag (ST) BF(D → X)× BF(D̄ → Y) = N_{xy}/(ε_{xy}·N_{DD̄}) : Double Tag (DT) Solving for the common factor,

 $N_{D\bar{D}} = [N_x \cdot N_y / N_{xy}] \times [\varepsilon_{xy} / (\varepsilon_x \cdot \varepsilon_y)].$

The resultant $N_{D\bar{D}}$ can be used to normalize signal yields, where only single D is reconstructed (useful method when statistically limited), to obtain an absolute BF.

 Or with the measured integrated luminosity at E_{cm} = 3773 MeV, L = 2920 fb⁻¹ (Chin.Phys.C37, 123001 (2013)), an observed cross section is readily obtained:

 $\sigma = N_{D\overline{D}}/L.$

Pr 2019 JUL/2019 9

$\sigma(e^+e^- \rightarrow D\bar{D})$ at $E_{cm} = 3.773 \text{ GeV}$

- Such analysis was published in CPC, which allows author names printed in Chinese characters!
 毛泽普)¹, S. Marcello^{55A,55C}, Z. X. Meng(孟召霞 lin(闵天党)¹, R. E. Mitchell²¹, X. H. Mo(莫晓虎 Muchnoi^{9,d}, H. Muramatsu(村松創)⁴⁹, A. Musta (字哲)^{1,42}, S. Nisar⁸, S. L. Niu(牛顺利)^{1,42}, X. Y.
- $\frac{3}{2}$, Y. Pan(潘越)^{42,52}, M. Papenbrock⁵⁶, P. Patter - In this analysis, N_x and N_y are extracted by fitting to M_{BC} (with cut on ΔE)
- Extract N_{xy} by fitting to a 2D; M_{BC}^y v.s. M_{BC}^x .
- Two popular variables:
 - Beam-Constrained-Mass; $M_{BC} = \sqrt{(E_{beam}^2 |\vec{p}_D|^2)}$ \vec{p}_D is a reconstructed D 3-momentum.
 - Its resolution is typically dominated by the spread in E_{beam} (i.e., independent of final states of D).
 - $\Delta E = E_D E_{beam}$
 - Almost independent of the measured M_{BC.}

Hajime Muramatsu

$\sigma(e^+e^- \rightarrow D\bar{D})$ at $E_{cm} = 3.773 \text{ GeV}$

 Averaging the resultant cross sections over different decay modes (X and Y), we have; σ(e⁺e⁻ → D⁰D⁰) = 3.615±0.010 (stat.)±0.038 nb σ(e⁺e⁻ → D⁺D⁻) = 2.830±0.011 (stat.)±0.026 nb.

And

N_{D0D0} = (10,597±28±98)×10³ N_{D+D-} = (8,296±31±65)×10³.

Today, I report some of our resent results in:

- Two body decays of D and D_s.
- Three body decays of D and D_s.
- - Λ_c decays.

Two-body decays

$D_s \rightarrow p \bar{n}$ based on the 4178 data

- The only kinematically allowed hadronic decay, involving baryons.
- Short-distance contribution is expected to be small : BF ~ 10⁻⁶ due to the chiral suppression by a factor of $(m_{\pi}/m_{Ds})^4$.

But long-distance can enhance BF to ~10⁻³ (C.H. Chen, et al. PLB663, 326).

- First evidence was reported by CLEO with a signal of 13.0±3.6 events with BF = (1.30±0.36^{+0.12}-0.16)×10⁻³ (PRL100, 181802).

$D_s \rightarrow p \bar{n}$ based on the 4178 data

- data Fit Events/(0.002 GeV/c²) Signal - DT: Reconstruct all final states, -- Background except the neutron: M_{tag} Sideband $M_{miss} = missing mass = M_{neutron}$. 20 - BESIII confirms it is indeed large: $BF = (1.21 \pm 0.10 \pm 0.05) \times 10^{-3}$. 0.85 0.90 0.95 1.00 $M_{\rm miss}({\rm GeV}/c^2)$
- The short distance dynamics is not the driven mechanism. The hadronization process, driven by nonperturbative dynamics determines the underlying physics.

$D_s \rightarrow \omega \pi$ and ωK based on the 4178 data

- ωπ : CF : Has seen by CLEO (PRD80,051102) : BF = (2.1±0.9±0.1)×10⁻³. - ωK: SCS: CLEO (PRD80,051102) set an UL = 2.4×10⁻³ @ 90% C.L.

Q. Qin et al. (PRD89, 054006) predicts (factorization)
 BF(ωK) ~ 0.6×10⁻³ (with A_{cp} ~ -0.6×10⁻³) or
 it could become ~0.07×10⁻⁴ (with A_{cp} ~ -2.3×10⁻³)
 if ρ-ω mixing is considered.

- DT method: Reconstruct the all final states.
- Cut on $\Delta M = M_{signal-side} M_{tag-side}$ to select $D_s \rightarrow tag$ and and the other $D_s \rightarrow \omega$ (π/K).
- Then project onto $M_{\pi\pi\pi0}$.

Published in PRD 99, 091101 (R) (2019)

Projecting onto $M_{\pi\pi\pi0}$ from the signal region of ΔM

BF(D_s → ωπ) = (1.77±0.32±0.13)×10⁻³
Consistent with CLEO's measurement, but more precise.
BF(D_s → ωK) = (0.87±0.24±0.08)×10⁻³ :First evidence!
According to Qin et al., this implies A_{cp} ~ -0.6×10⁻³. and negligible effect from ρ-ω mixing.

Published in PRD 99, 112005 (2019)

$D_s \rightarrow K_s K$ and $K_L K$ based on the 4178 data

- As in $D \rightarrow K^0 \pi$ and $D \rightarrow \overline{K}^0 \pi$ could interfere, so can the CF and DCS amplitudes in D_s decays : $D_{s^+} \rightarrow K^0 K^+$ and $D_{s^+} \rightarrow \overline{K}^0 K^+$.
- Such interference effect could also lead to CPV :

A_{CP} ~ 10⁻³, predicted by D. Wang et al. (PRL 119, 181802 (2017)).

- BF(D_s⁺ \rightarrow K_sK⁺) = (1.425±0.038±0.031)%, consistent with the WA.
- BF($D_{s^+} \rightarrow K_LK^+$) = (1.485±0.039±0.046)%, 1st measurement.
- K_S/K_L asymmetry, R = $\frac{\mathcal{B}(D_s^+ \to K_S^0 K^+) \mathcal{B}(D_s^+ \to K_L^0 K^+)}{\mathcal{B}(D_s^+ \to K_0^0 K^+) + \mathcal{B}(D_s^+ \to K_L^0 K^+)}$

= (-2.1±1.9±1.6)%, consistent with zero).

- $A_{CP}(D_s \rightarrow K_S K) = (0.6 \pm 2.8 \pm 0.6)\%$ and $A_{CP}(D_s \rightarrow K_L K) = (-1.1 \pm 2.6 \pm 0.6)\%$

Published in PRD 99, 032002 (2019)

$D^+ \rightarrow K_{S/L}K(\pi^0)$ based on the 3773 data

- Also looked for similar final states, but in D⁺ decays.
- Also added an additional π⁰ (For this 3-body decay, MC was tuned based on D→KKπ by CLEO : PRD 78, 072003 (2008)).

Three-body decays

Submitted to PRL (arXiv:1903.04118)

$D_{s}^{+} \rightarrow \pi^{+}\pi^{0}\eta$ based on the 4178 data

- Amplitude analysis based on DT-ed 1239 events (purity: 97.7%). - W-annihilation dominant.

Amplitude	$\phi_n \pmod{2}$	FF_n
$D_s^+ \to \rho^+ \eta$	0.0 (fixed)	$0.783 \pm 0.050 \pm 0.021$
$D_s^+ \to (\pi^+ \pi^0)_V \eta$	$0.612 \pm 0.172 \pm 0.342$	$0.054 \pm 0.021 \pm 0.025$
$D_s^+ \to a_0(980)\pi$	$2.794 \pm 0.087 \pm 0.044$	$0.232 \pm 0.023 \pm 0.033$

- Improved precision:

BF(D_s⁺ → $\pi^{+}\pi^{0}\eta$) = (9.50±0.28±0.41)%

- First measurement (16.2 σ stat. significance)! BF(D_s⁺ \rightarrow a₀(980)⁺⁽⁰⁾ $\pi^{0(+)}$, a₀(980)⁺⁽⁰⁾ \rightarrow $\pi^{+(0)}\eta$) = (1.46±0.15±0.23)% Very large BF, compared to other W-annihilation decays (e.g., D_s \rightarrow pn̄/ ω π are all at 10⁻³ level).

$D^0 \rightarrow K^-\pi^+\pi^0\pi^0$ based on the 3773 data

- Amplitude analysis based on DT-ed 5950 events (purity: 98.9%).
- One of the largest BF in the neutral D decays. First amplitude analysis on this decay mode.

- Improved precision: BF(D⁰ \rightarrow K⁻ $\pi^{+}\pi^{0}\pi^{0}$) = (8.86±0.13±0.19)% led by D⁰ \rightarrow K⁻a₁(1260)⁺.

Amplitude mode	FF [%]	Phase $[\phi]$	Significance $[\sigma]$
$D \rightarrow SS$			
$D \rightarrow (K^- \pi^+)_{\text{S-wave}} (\pi^0 \pi^0)_{\text{S}}$	$6.92 \pm 1.44 \pm 2.86$	$-0.75 \pm 0.15 \pm 0.47$	>10
$D \to (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_S$	$4.18 \pm 1.02 \pm 1.77$	$-2.90 \pm 0.19 \pm 0.47$	6.0
$D \to AP, A \to VP$			
$D \to K^- a_1(1260)^+, \rho^+ \pi^0[S]$	$28.36 \pm 2.50 \pm 3.53$	0 (fixed)	>10
$D \to K^- a_1(1260)^+, \rho^+ \pi^0 [D]$	$0.68 \pm 0.29 \pm 0.30$	$-2.05 \pm 0.17 \pm 0.25$	6.1
$D \to K_1(1270)^- \pi^+, K^{*-} \pi^0[S]$	$0.15 \pm 0.09 \pm 0.15$	$1.84 \pm 0.34 \pm 0.43$	4.9
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[S]$	$0.39 \pm 0.18 \pm 0.30$	$-1.55 \pm 0.20 \pm 0.26$	4.8
$D \to K_1(1270)^0 \pi^0, K^{*0} \pi^0[D]$	$0.11 \pm 0.11 \pm 0.11$	$-1.35 \pm 0.43 \pm 0.48$	4.0
$D \to K_1(1270)^0 \pi^0, K^- \rho^+[S]$	$2.71 \pm 0.38 \pm 0.29$	$-2.07 \pm 0.09 \pm 0.20$	>10
$D \to (K^{*-}\pi^0)_A \pi^+, K^{*-}\pi^0[S]$	$1.85 \pm 0.62 \pm 1.11$	$1.93 \pm 0.10 \pm 0.15$	7.8
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[S]$	$3.13 \pm 0.45 \pm 0.58$	$0.44 \pm 0.12 \pm 0.21$	>10
$D \to (K^{*0}\pi^0)_A \pi^0, K^{*0}\pi^0[D]$	$0.46 \pm 0.17 \pm 0.29$	$-1.84 \pm 0.26 \pm 0.42$	5.9
$D \to (\rho^+ K^-)_A \pi^0, K^- \rho^+ [D]$	$0.75 \pm 0.40 \pm 0.60$	$0.64 \pm 0.36 \pm 0.53$	5.1
$D \to AP, A \to SP$			
$D \rightarrow ((K^-\pi^+)_{S-\text{wave}}\pi^0)_A \pi^0$	$1.99 \pm 1.08 \pm 1.55$	$-0.02 \pm 0.25 \pm 0.53$	7.0
$D \rightarrow VS$			
$D \rightarrow (K^- \pi^0)_{S-\text{wave}} \rho^+$	$14.63 \pm 1.70 \pm 2.41$	$-2.39 \pm 0.11 \pm 0.35$	>10
$D \rightarrow K^{*-}(\pi^+\pi^0)_S$	$0.80 \pm 0.38 \pm 0.26$	$1.59 \pm 0.19 \pm 0.24$	4.1
$D \to K^{*0} (\pi^0 \pi^0)_S$	$0.12 \pm 0.12 \pm 0.12$	$1.45 \pm 0.48 \pm 0.51$	4.1
$D \rightarrow VP, V \rightarrow VP$			
$D \to (K^{*-}\pi^+)_V \pi^0$	$2.25 \pm 0.43 \pm 0.45$	$0.52 \pm 0.12 \pm 0.17$	>10
$D \rightarrow VV$			
$D \to K^{*-}\rho^+[S]$	$5.15 \pm 0.75 \pm 1.28$	$1.24 \pm 0.11 \pm 0.23$	>10
$D \to K^{*-} \rho^+[P]$	$3.25 \pm 0.55 \pm 0.41$	$-2.89 \pm 0.10 \pm 0.18$	>10
$D \to K^{*-}\rho^+[D]$	$10.90 \pm 1.53 \pm 2.36$	$2.41 \pm 0.08 \pm 0.16$	>10
$D \to (K^- \pi^0)_V \rho^+ [P]$	$0.36 \pm 0.19 \pm 0.27$	$-0.94 \pm 0.19 \pm 0.28$	5.7
$D \rightarrow (K^- \pi^0)_V \rho^+[D]$	$2.13 \pm 0.56 \pm 0.92$	$-1.93 \pm 0.22 \pm 0.25$	>10
$D \rightarrow K^{*-}(\pi^+\pi^0)_V[D]$	$1.66 \pm 0.52 \pm 0.61$	$-1.17 \pm 0.20 \pm 0.39$	7.6
$D \to (K^- \pi^0)_V (\pi^+ \pi^0)_V [S]$	$5.17 \pm 1.91 \pm 1.82$	$-1.74 \pm 0.20 \pm 0.31$	7.6
$D \rightarrow TS$			
$D \rightarrow (K^- \pi^+)_{S-\text{wave}} (\pi^0 \pi^0)_T$	$0.30 \pm 0.21 \pm 0.30$	$-2.93 \pm 0.31 \pm 0.82$	5.8
$D \rightarrow (K^- \pi^0)_{S-\text{wave}} (\pi^+ \pi^0)_T$	$0.14 \pm 0.12 \pm 0.10$	$2.23 \pm 0.38 \pm 0.65$	4.0
TOTAL	98.54		

Submitted to PRD (arXiv:1901.05936)

$D^+ \rightarrow K_S \pi^+ \pi^+ \pi^-$ based on the 3773 data

- Amplitude analysis based on DT-ed 4559 events (purity: 97.5%).
- Similar decay mode in the charged D decay.

Extracted BFs by the PDG BF(D⁺ \rightarrow K_S $\pi^+\pi^+\pi^-$)

Component	Branching fraction $(\%)$
$D^+ \to K^0_S a_1(1260)^+ (\rho^0 \pi^+)$	$1.197 \pm 0.062 \pm 0.086 \pm 0.044$
$D^+ \to K_S^0 a_1(1260)^+ (f_0(500)\pi^+)$	$0.163 \pm 0.021 \pm 0.005 \pm 0.006$
$D^+ \to \bar{K_1}(1400)^0 (K^{*-}\pi^+)\pi^+$	$0.642 \pm 0.036 \pm 0.033 \pm 0.024$
$D^+ \to \bar{K}_1(1270)^0 (K^0_S \rho^0) \pi^+$	$0.071 \pm 0.009 \pm 0.021 \pm 0.003$
$D^+ \to \bar{K}(1460)^0 (K^{*-}\pi^+)\pi^+$	$0.202 \pm 0.018 \pm 0.006 \pm 0.007$
$D^+ \to \bar{K}(1460)^0 (K^0_S \rho^0) \pi^+$	$0.024 \pm 0.006 \pm 0.015 \pm 0.009$
$D^+ \to \bar{K}_1(1650)^0 (\tilde{K^{*}} \pi^+) \pi^+$	$0.048 \pm 0.012 \pm 0.027 \pm 0.002$
$D^+ \to K^0_S \pi^+ \rho^0$	$0.190 \pm 0.021 \pm 0.089 \pm 0.007$
$D^+ \to K_S^{\breve{0}} \pi^+ \pi^+ \pi^-$	$0.241 \pm 0.018 \pm 0.018 \pm 0.009$

- Improved precisions.
- Consistent with the previous measurements.
- Again, led by $D^+ \rightarrow K_Sa_1(1260)^+$

(also consistent with our measurement in $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$: PRD 95, 072010 (2017)).

- But $D^+ \rightarrow \bar{K}_1(1400)^0 \pi^+$ is found to be larger, unlike what we saw in the two D^0 cases.

$D^0 \rightarrow K_S \pi^+ \pi^-$ based on the 3773 data

- To improve the measurement of the least known CKM angle, ϕ_3/γ

Determine ϕ_3 through the measurement of the interference between b \rightarrow c and b \rightarrow u transitions when D^0 and \overline{D}^0 both decay to the same final state f(D).

 $D^0 \rightarrow K_S \pi^+ \pi^-$

- φ₃/γ is measured at B-factories.
- They need the strong-phase difference between D and D
to extract the total decay rate of B → D K.
- BESIII can provide it based on the quantum-correlated D⁰D
⁰-pair. (e⁺e⁻ → γ^{*} (→ ψ(3770)) → D⁰D
⁰)

 Efficiency-corrected yields in the ith Dalitz bin are; (see PRD82, 112006 (2010) for more details)

• $\infty \pm c_i$ for DT: D \rightarrow CP(\pm) states vs D \rightarrow K_S $\pi^+\pi^-$

• $\propto c_i c_j + s_i s_j$ for DT (two Dalitz): D $\rightarrow K_S \pi^+ \pi^- v_S D \rightarrow K_S \pi^+ \pi^-$

```
(c_i, s_i): weighted average of \cos(\Delta \delta_D)
and \sin(\Delta \delta_D) respectively where \Delta \delta_D
is the difference between phase of
D^0 and \overline{D}^0
```

For the case of "CP tag vs $K_S\pi^+\pi^-$ "

Results presented here will be using Optimal Binning scheme.

- Based on BESIII 2.93fb⁻¹ at E_{cm} = 3.773 GeV.
- Only statistical errors are shown.
- Consistent with the previous CLEO measurement.

-	Runs	Collected / Expected	Year	γ/ϕ_3
		integrated luminosity	attained	sensitivity
	LHCb Run-1 $[7, 8 \text{ TeV}]$	3 fb^{-1}	2012	8°
0	LHCb Run-2 $[13 \text{ TeV}]$	$6 {\rm fb}^{-1}$	2018	4°
	Belle II Run	50 ab^{-1}	2025	1.5°
	LHCb upgrade I $[14 \text{ TeV}]$	$50 { m ~fb^{-1}}$	2030	$< 1^{\circ}$
	LHCb upgrade II [14 TeV]	$300 {\rm ~fb^{-1}}$	(>)2035	$< 0.4^{\circ}$

Soon to be submitted.

With the CLEO result, the uncertainty on ϕ_3/γ is found to be ~4° for LHCb. This will be improved to ~2.4° with this BESIII result.

Currently working to add more tags, expect further reduction by ~×2.

This would be sufficient precision until the era of Belle II and LHCb upgrades.

Λ_c

- The lightest charmed baryons

 → most of the charmed baryons
 will eventually decay into Λ_c.
 Important to know the decay
 properties of Λ_c.
- Also important input to Λ_b Physics as Λ_b decays dominantly to Λ_c .
- Total known measured BF is ~ 60%.

Published in CPC 43, 083002 (2019)

$\Lambda_{c^{+}} \rightarrow \Sigma^{+} (\eta/\eta')$ based on the 4600 data

- CF decays, proceed through nonfactorizable internal W-mission/exchange.
- Large range of predicted BFs.

- Measured:

▶BF($\Lambda_c^+ \rightarrow \Sigma^+ \eta$)/BF($\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$) = 0.35±0.16±0.03 (<0.58 @90 C.L.)</p>
▶BF($\Lambda_c^+ \rightarrow \Sigma^+ \eta'$)/BF($\Lambda_c^+ \rightarrow \Sigma^+ \omega$) = 0.86±0.34±0.07 (<1.20 @90 C.L.)</p>

- With the known BF($\Lambda_c^+ \rightarrow \Sigma^+(\pi^0/\omega)$) from BESIII (PRL 116, 052001 (2016)): BFs in %.

Decay mode	Körner [5]	Sharma [3]	Zenczykowski [4]	Ivanov [6]	CLEO [12]	This work
$\Lambda_c^+ \to \Sigma^+ \eta$	0.16	0.57	0.94	0.11	$0.70 {\pm} 0.23$	$0.41 \pm 0.20 \ (< 0.68)$
$\Lambda_c^+ \to \Sigma^+ \eta'$	1.28	0.10	0.12	0.12	-	$1.34{\pm}0.57~({<}1.9)$

- BF(
$$\Lambda_{c}^{+} \rightarrow \Lambda + X$$
) = (38.2^{+2.8}-2.2[±]0.8)%
- Also, looked for;

$$\mathcal{A}_{CP} = \frac{\mathcal{B}(\Lambda_{c}^{+} \rightarrow \Lambda + X) - \mathcal{B}(\bar{\Lambda}_{c}^{-} \rightarrow \bar{\Lambda} + X)}{\mathcal{B}(\Lambda_{c}^{+} \rightarrow \Lambda + X) + \mathcal{B}(\bar{\Lambda}_{c}^{-} \rightarrow \bar{\Lambda} + X)}.$$
- A_{CP} = (+2.1^{+7.0}-6.6[±]1.4)%.

Mapping out Λ_c^+ decays

- Fig 1. from Gronau/Rosner/Wohl (PRD 98, 073003 (2018)).
- BFs represented by areas of boxes (no errors are shown).
- Shaded areas = not observed, yet, but expected by stat. isospin model (PRD 97, 116015 (2018)).
- SUM ~ 90±5%.
- What are the remaining?
 - should confirm those shaded ones.
 - should improve accuracies on those CS modes.
 - BESIII will take more data at E_{cm} = 4.6 GeV in the near future!

Summary

- Our results include new measurement, have confirmed and improved the precisions over the previous results.
- More measurements in D_(s) hadronic decays are coming.
- Planning to take more data at/near $E_{cm} \sim 4.6$ GeV as well as $E_{cm} = 3.773$ GeV soon, which will allow us to even improve further precisions and rare/ forbidden searches in $D_{(s)}/\Lambda_c$ decays.

- Other recent results not mentioned in in this report:

- ▶ PRD 97, 052005 (2018) : SCD : $D^0 \rightarrow \omega \eta$, $\eta^{(')} \pi^0$, and $\eta^{(')} \eta$.
- ▶ PRD 97, 072004 (2018) : D → PP.
- ▶ PRD 98, 092009 (2018) : $D^{0(+)} \rightarrow K_S \pi^{0(+)} \eta'$ and $D^0 \rightarrow K^- \pi^+ \eta'$.
- ▶ PLB 783, 200 (2018) : $\Lambda_c^+ \rightarrow \Xi^0 K^+$ and $\Xi(1530)^0 K^+$.
- ▶ PRD 99, 032010 (2019) : Λ_c⁺ → Ληπ⁺ and Σ(1385)⁺η.
- ▶ Submitted to PRD-RC (arXiv:1905.04707) : Weak decay asymmetric of $\Lambda_c^+ \rightarrow pK_s$, $\Lambda \pi^+$, $\Sigma^+ \pi^0$, and $\Sigma^0 \pi^+$.