

DARK SECTORS AT LHCB

CONSTANTIN WEISSER, MIT ON BEHALF OF THE LHCB COLLABORATION DPF, JULY 29 2019

THE CHASM

lightest DM particle could be stable because it is (dark) charged

What if there is no connection between the SM and Dark Sector up to the Planck scale?

THE CHASM

SM DM SM F_{SM} F_{DM} SM DM SM

lightest DM particle could be stable because it is (dark) charged

ĎΜ

DM

What if there is no connection between the SM and Dark Sector up to the Planck scale?

PORTALS

The force carriers of the two sectors can couple if the sectors are somehow connected (even at a large mass scale).

PORTALS

See: Natalia Toro, DPF Tue 8.50am Models of Dark Matter & Dark Sectors

The force carriers of the two sectors can couple if the sectors are somehow connected (even at a large mass scale).

VECTOR (DARK PHOTON) PORTAL

The dark photon mixes with the SM photon. The coupling to SM particles is proportional to electric charge.

1 or 2 loops: roughly $10^{-3} \le \epsilon \le 10^{-5}$

VISIBLE A' DECAYS

DM-DM self interactions and 1 or 2 loop regime bound a naively interesting region.

7

VISIBLE A' DECAYS

8

LHCB

- Single-arm forward spectrometer ($2 < \eta < 5$; $1 < \theta < 15^\circ$)
- Excellent lifetime ($\sigma_{ au} = 45 fs$) and mass ($\sigma_m = 0.4\%$) resolution
- Unique particle ID

LHCb, JINST 3 (2008) S08005 LHCb Int.J.Mod.Phys. A 30(2015) 1530022

LHCB TRIGGER

Flexible triggering scheme needed to select even low energy candidates.

LHCB INCLUSIVE A' $\rightarrow \mu^+ \mu^-$

Production: Pseudoscalar Meson Decay, Drell Yan, ...

1. Count A' Candidates 2. Compare to prompt γ^* 3. Set Limits / Claim Discovery

\Rightarrow Fully data-driven search

LHCB LIMITS: 2016 DATA

Run 2 sensitivity: prompt: 1.5 – 2.5x gain; displ: much bigger region covered

Can recast as searches for other vector models (B, B-L, protophobic, ...)

LHCb-PAPER-2017-038, PRL 120 (2018) 061801 [1710.02867] Technical: LHCb, JINST 13 (2018) P06008; Williams, JINST 12 (2017) P0903 Y: LHCb-PAPER-2018-008 JHEP 8 (2018) 147 [1805.09820] 12 Plot from Ilten, Soreq, Thaler, Williams, Xue [1801.04847]

RUN 2 EXTENSIONS

Non-Standard Topology

SCALAR (HIGGS) PORTAL

e.g. χ responsible for an inflationary period in the early universe

 $\mathsf{B} \to \mathsf{K}^{(*)} \ \mu^+ \ \mu^-$

Penguin diagrams are sensitive to many BSM scenarios. Dark higgs will have sizable coupling to the top and a large decay rate to muons.

DARK HIGGS LIMITS

LHCb sensitivity is limited by size of VELO

Bonus: Run 1+2 LHCb data has world leading sensitivity to ALPs with dominant gluon coupling

LHCb-PAPER-2015-036, Phys. Rev. Lett. 115, 161802 [1508.04094] LHCb-PAPER-2016-052, Phys. Rev. D 95, 071101 [1612.07818] 16

ALP: :Aloni, Soreq, Williams [1811.03474]

CODEX-B

A proposed COmpact Detector for EXotics at LHCb

Complimentary due to lifetime acceptance Excellent sensitivity to most long-lived particle models Including dark Higgs.

Dark Sectors are dark matter scenarios worth exploring

LHCb has world leading sensitivity to different models

INVISIBLE A' DECAYS

RECASTING A' AS ANY VECTOR

		nu	u type	d type
A'	-g _e	0	$\frac{2g_e}{3}$	$-\frac{g_e}{3}$
B	$-\left(\frac{g_e}{4\pi}\right)^2$	0	$\frac{1}{3}$	$\frac{1}{3}$
B-L	-1	-1	$\frac{1}{3}$	$\frac{1}{3}$
Proto phobic	-1	0	$-\frac{1}{3}$	$\frac{2}{3}$

Accounting for production, branching ratio and detection efficiency, existing and future searches can be recast to any vector model.

Recast your model with https://gitlab.com/philten/darkcast 23

Accounting for production, branching ratio and detection efficiency, existing and future searches can be recast to any vector model.

Recast your model with https://gitlab.com/philten/darkcast 24

Accounting for production, branching ratio and detection efficiency, existing and future searches can be recast to any vector model.

Recast your model with https://gitlab.com/philten/darkcast 25

Accounting for production, branching ratio and detection efficiency, existing and future searches can be recast to any vector model.

Recast your model with https://gitlab.com/philten/darkcast 26

CODEX-B

- 6 RPC layers at 4 cm intervals on each box face with 1 cm granularity
- 5 equally spaced triplets along the depth to minimize distance between reconstructed vertex and 1st measurement. ε_{tracking}~ O(1).
- 50–100 ps timing from RPC's foreseen for mass reconstruction

Can the portals help us discover dark matter?