

Belle II Commissioning, First Results, and Future Prospects

Zachary Liptak

DPF 2019 Boston

On behalf of the BELLE II Collaboration

e⁺e⁻ B Factories: B meson pairs in a clean environment

- Aim to provide insights into new physics via precision measurements and rare decays
- e⁺e⁻ collisions provided with asymmetric energy (7 GeV / 4 GeV)
 - Meson pairs boosted → measureable lifetimes
 - Individual quantum-correlated $B\bar{B}$ pairs
 - Clean event topology
 - Efficient detection of neutrals
 - Large sample of clear T decays
- Complementary to LHCb hadron collisions
 - Different strengths and systematics
 - → Can work in tandem to achieve better results!
- Previous-gen B-Factories (Belle, BaBar)
 provided 1.5 ab⁻¹... Belle II will go much further!

From KEKB to SuperKEKB

- SuperKEKB: The B-factory at KEK
- Asymmetric energy e⁻ e⁺ collider
- 10.58 GeV \sqrt{s} energy

Doubled beam currents and change to 'nanobeam'

- 1/20th size at IP
 - → **40x** KEKB instantaneous luminosity
 - → **50x** KEKB integrated luminosity

Belle II Detector

KL and muon detector

Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter

CsI(TI), waveform sampling electronics

electrons (7 GeV)

Vertex Detector

2 layers Si Pixels (DEPFET) + 4 layers Si double sided strip DSSD

> Central Drift Chamber Smaller cell size, long lever arm

Particle Identification

Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (forward)

positrons (4 GeV)

Belle II TDR, arXiv:1011.0352

Challenges in a High-Luminosity Environment

- Increased beam backgrounds
 - 10 20 fold increase expected
 - Problematic for data analysis
 - Radiation damage to detector components
 - → Possibly reduced lifetime
- Increased occupancy
- Very high event rates (~30 kHz at L1 trigger)

In the Beginning: Commissioning Phases

Two dedicated runs to prepare for upcoming challenges and ensure running conditions would be safe for Belle as luminosity increases:

Phase I

- February July 2016
- -Accelerator commissioning focus
- -No beam-beam collisions
- -Dedicated background detection system (BEAST II) placed at IP
- -Results of background studies published last year: arXiv:1802.01366

Phase II

- -March July 2018
- -First collisions: April 26th
- -More dedicated background studies carried out along with accelerator beam tuning
- -Ultimately predicted Phase III could safely begin
- -Results forthcoming! (Several papers in the works)

Belle II Data Taking Plan

Phase II Data: Early Particle Re-discoveries

First Collisions - SuperKEKB Control Room

Moving to Phase III - Vertex Detector Installation

Phase III... so far

D⁰ Meson Lifetime

- Measured lifetime of D⁰
- Small subset of collected data used
- Tiny flight distances → great test of vertex detector performance
- Measurements in agreement with PDG (410.1 ± 1.5 fs)

R₂ Fit and B Prediction

$$H_l = \sum_{i,j} \frac{|P_i||P_j|}{E_j^{vis}} P_l(cos\theta_{ij})$$

$$R_2 \equiv {^{H_2}/_{H_0}}$$

• R_2 provides discrimination between continuum and $B\bar{B}$

- Excess of data found at low values in on-resonance data
 → likely underestimated beam-gas BG
- Use off-resonance data for continuum modeling

B → Dh Reconstruction

- B meson signals reconstructed from early data set
- ~300 candidate events reconstructed from a 410 pb⁻¹ sample

Full Event Interpretation

- Fast BDT-based algorithm fully reconstructs B decays with > 1000 B decay modes
- Useful for channels with weak signature, e.g., missing momentum (vs in final state)
- Performance on early data shows improvement compared to predecessor algorithm

T. Keck et al., Comput. Softw. Big Sci (2019) 3: 6.

Belle II Physics Plan

- Wide-ranging plan for physics studies, including:
 - Precision CKM
 - -EW Penguin decays
 - -Tauonic decays
 - -Charm decays
 - -Dark Sector searches
 - -Hadron spectroscopy

		beervable Theory Sys. limit (Discovery) lab. 1						
Process	Opservaple	Theory	Sys. limi	t (Disco.	o _{VS} Belle	Anomal	NP NP	
$B o K^{(*)} \nu \nu$	$Br., F_L$	***	>50	***	***	*	**	
$B \to X_{s+d} \gamma$	$A_{ m CP}$	***	>50	***	***	*	**	
$B \to X_d \gamma$	$A_{ m CP}$	**	>50	***	***	-	**	
$B o K_S^0 \pi^0 \gamma$	$S_{K^0_S\pi^0\gamma}$	**	> 50	**	***	*	***	
$B o ho \gamma$	$S_{ ho\gamma}$	**	>50	***	***	-	***	
$B o X_s l^+ l^-$	Br.	***	> 50	***	**	**	***	
$B o X_s l^+ l^-$	R_{X_s}	***	> 50	***	***	**	***	
$B \to K^{(*)} e^+ e^-$	$R(K^{(*)})$	***	> 50	**	***	***	***	
$B o X_s \gamma$	Br.	**	1-5	***	*	*	**	
$B_{d,(s)} \to \gamma \gamma$	$Br., A_{\mathrm{CP}}$	**	>	**	**	-	**	
			50(5)					
$B \to K^* e^+ e^-$	P_5'	**	>50	***	**	***	***	
B o K au l	Br.	***	>50	**	***	**	***	

Observables	Expected the. accu-	Expected	Facility (2025)
	racy	exp. uncertainty	
UT angles & sides			
φ ₁ [°]	***		Belle II
ϕ_2 [°]	**	000 a _	Relle II
ϕ_3 [°]	***	_~~0.7n	II o'll
$ V_{cb} $ incl.	***	1%	267
$ V_{cb} $ excl.	***	1.5%	
$ V_{ub} $ incl.	**	3%	Вень
$ V_{ub} $ excl.	**	2%	Belle II/LHCb
CP Violation			
$S(B \to \phi K^0)$	***	0.02	Belle II
$S(B \to \eta' K^0)$	***	0.01	Belle II
$A(B \to K^0 \pi^0)[10^{-2}]$	***	4	Belle II
$A(B \to K^+\pi^-) [10^{-2}]$	***	0.20	LHCb/Belle II
(Semi-)leptonic			,
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	**	3%	Belle II
$\mathcal{B}(B \to \mu \nu) [10^{-6}]$	**	7%	Belle II
R(B o D au u)	***	3%	Belle II
$R(B \to D^* au u)$	***	2%	Belle II/LHCb
Radiative & EW Penguins			
$\mathcal{B}(B o X_s \gamma)$	**	4%	Belle II
$A_{CP}(B \to X_{s,d}\gamma) [10^{-2}]$	***	0.005	Belle II
$S(B \to K_S^0 \pi^0 \gamma)$	***	0.03	Belle II
$S(B \to \rho \gamma)$	**	0.07	Belle II
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	**	0.3	Belle II
$\mathcal{B}(B \to K^* \nu \overline{\nu}) \ [10^{-6}]$	***	15%	Belle II
$\mathcal{B}(B \to K \nu \overline{\nu}) [10^{-6}]$	***	20%	Belle II
$R(B \to K^*\ell\ell)$	***	0.03	Belle II/LHCb
Charm			,
$\mathcal{B}(D_s o \mu u)$	***	0.9%	Belle II
$\mathcal{B}(D_s \to \tau \nu)$	***	2%	Belle II
$A_{CP}(D^0 \to K_S^0 \pi^0) [10^{-2}]$	**	0.03	Belle II
$A_{CP}(D^0 \to K_S^0 \pi^0) [10^{-2}]$ $ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	***	0.03	Belle II
$\phi(D^0 \to K_S^0 \pi^+ \pi^-) \ [^\circ]$	***	4	Belle II
Tau			
$\tau \to \mu \gamma \ [10^{-10}]$	***	< 50	Belle II

CKM Improvement Projections

CKM Improvement Projections

Dark Sector Searches: Dark Photons and ALPs

Improved luminosity and calorimeter hermiticity can allow great improvement!

Summary

- The Belle II experiment at SuperKEKB is running with a full detector
- Physics run began Spring 2019 following 2 dedicated commissioning phases
 - Vertex detector installed around IP before physics runs for precision measurements
- 6.49 fb⁻¹ collected so far, of a planned 50 ab⁻¹
- Wide ranging physics plan, including precision measurements, dark sector searches, and much more
- Still ramping up to full luminosity

Stay tuned for more!

Follow us on social media for updates and information!

Facebook: Twitter

Instagram

@belle2collab

(JP: @belle2japan)

Supplementary Material

CKM Improvement Projections

Current fitted parameters

Moving to Phase 3 - Vertex Detector Installation

Dark γ→ Invisible

- Light (GeV scale) hidden dark sector weakly coupled to SM by dark photon A'
- Experimental signature: only 1 high-energy photon in detector
- Needs single photon trigger
 - Not present in Belle
 - Only present of ~10% of BaBar
 - Implemented for Phase 2
- ~No true physics backgrounds
 - Only missing particle backgrounds:
 - Radiative bhabha, γγ events
 with one γ not reconstructed

Axion-Like Particles (ALPs)

- Pseudoscalars that couple to bosons
 - \circ Can target photon coupling g_{avv}
- Coupling not related to mass
 - Different from QCD axions
- Three-Photon signature
 - One y from recoil
 - Pair from a->vv
- Four calorimeter signatures
 - (Determined by displacement, θ of photon pair)

ALPs: Dark Sector Pseudoscalar Portal

Dark Sector Searches: Invisible Dark γ and ALPs

Vector: Dark $\gamma \rightarrow$ Invisible

Pseudoscalar: Axion-Like Particles

Dark Sector Searches: Invisible Dark γ and ALPs

Other searches possible!

- Magnetic Monopoles
- Invisible Z', Z' → LFV (e -μ coupling)
- Dark scalars
- Dark Higgs
- Off-shell A' decays
- Even more...

Vector: Dark $\gamma \rightarrow$ Invisible

Pseudoscalar: Axion-Like Particles

Dark γ→ Invisible: Prospects

Improved luminosity and calorimeter hermiticity can allow great improvement!

Dark γ→ Visible dileptons: Heavier DM

