Belle II Commissioning, First Results, and Future Prospects

Zachary Liptak
DPF 2019 Boston
On behalf of the BELLE II Collaboration
The Belle II Collaboration

- International collaboration hosted at KEK in Tsukuba, Japan
- ~980 collaborators from 112 institutions in 26 countries
e^+e^- B Factories: B meson pairs in a clean environment

- Aim to provide insights into new physics via precision measurements and rare decays
- **e^+e^-** collisions provided with asymmetric energy (7 GeV / 4 GeV)
 - Meson pairs boosted → measureable lifetimes
 - Individual quantum-correlated $B\bar{B}$ pairs
 - Clean event topology
 - Efficient detection of neutrals
 - Large sample of clear τ decays
- Complementary to LHCb hadron collisions
 - Different strengths and systematics
 - → Can work in tandem to achieve better results!
- Previous-gen B-Factories (Belle, BaBar) provided 1.5 ab$^{-1}$… Belle II will go much further!
From KEKB to SuperKEKB

- SuperKEKB: The B-factory at KEK
- Asymmetric energy $e^- - e^+$ collider
- 10.58 GeV \sqrt{s} energy

Doubled beam currents and change to 'nanobeam'
- $1/20^{th}$ size at IP
- $40x$ KEKB instantaneous luminosity
- $50x$ KEKB integrated luminosity
Challenges in a High-Luminosity Environment

- Increased beam backgrounds
 - 10 - 20 fold increase expected
 - Problematic for data analysis
 - Radiation damage to detector components
 - Possibly reduced lifetime
- Increased occupancy
- Very high event rates (~30 kHz at L1 trigger)
In the Beginning: Commissioning Phases

Two dedicated runs to prepare for upcoming challenges and ensure running conditions would be safe for Belle as luminosity increases:

Phase I
- February – July 2016
- Accelerator commissioning focus
- No beam-beam collisions
- Dedicated background detection system (BEAST II) placed at IP
- Results of background studies published last year: [arXiv:1802.01366](https://arxiv.org/abs/1802.01366)

Phase II
- March – July 2018
- First collisions: April 26th
- More dedicated background studies carried out along with accelerator beam tuning
- Ultimately predicted Phase III could safely begin
- Results forthcoming! (Several papers in the works)
Belle II Data Taking Plan

Peak Luminosity $[\text{cm}^{-2}\text{s}^{-1}]$

Belle total integrated luminosity

Integrated Luminosity $[\text{ab}^{-1}]$

$\times 10^{35}$
Phase II Data: Early Particle Re-discoveries

\[\mu = (497.614 \pm 0.004) \text{ MeV/c}^2 \]
\[\sigma = (3.282 \pm 0.113) \text{ MeV/c}^2 \]
First Collisions - SuperKEKB Control Room
First Collisions - Belle II Control Room
Moving to Phase III - Vertex Detector Installation

One layer of two in Pixel Detector completed before Phase III. Remaining half to be installed later.
Phase III... so far

Luminosity Performance

- $L_p \times 10^{31}$ [cm$^{-2}$s$^{-1}$mA$^{-2}$]
- 2×10^{33}
- 5×10^{34}

- $\beta_y = 3$ mm $\eta_b = 789$
- $\beta_y = 3$ mm $\eta_b = 1576$
- $\beta_y = 3$ mm $\eta_b = 1576$ (V-angle)
- $\beta_y = 2$ mm $\eta_b = 789$
- $\beta_y = 2$ mm $\eta_b = 1576$

Belle II online luminosity

Exp: 7-8 - All runs

- Integrated luminosity [fb$^{-1}$]
- Total $\int L \, dt = 6.49$ [fb$^{-1}$]

410 pb$^{-1}$ calibrated, aligned, and processed

Plot on 2019/06/28
D⁰ Meson Lifetime

- Measured lifetime of D⁰
- Small subset of collected data used
- Tiny flight distances → great test of vertex detector performance
- Measurements in agreement with PDG (410.1 ± 1.5 fs)

Note: Figure not to scale
R_2 Fit and B Prediction

- R_2 provides discrimination between continuum and $B\bar{B}$

- Excess of data found at low values in on-resonance data → likely underestimated beam-gas BG

- Use off-resonance data for continuum modeling

\[H_l = \sum_{i,j} \frac{|P_i||P_j|}{E_{vis}^j} P_l(cos\theta_{ij}) \]

\[R_2 \equiv \frac{H_2}{H_0} \]

Belle II 2019 Preliminary

- $\int Ldt = 410 \text{ pb}^{-1}$

- Y(4S) data
- BB
- Off-resonance

Spherical BB-like events

Continuum-like events
B → Dh Reconstruction

- B meson signals reconstructed from early data set
- ~300 candidate events reconstructed from a 410 pb⁻¹ sample
• Fast BDT-based algorithm fully reconstructs B decays with > 1000 B decay modes
• Useful for channels with weak signature, e.g., missing momentum (vs in final state)
• Performance on early data shows improvement compared to predecessor algorithm

Belle II Physics Plan

- Wide-ranging plan for physics studies, including:
 - Precision CKM
 - EW Penguin decays
 - Tauonic decays
 - Charm decays
 - Dark Sector searches
 - Hadron spectroscopy

<table>
<thead>
<tr>
<th>Process</th>
<th>Observable</th>
<th>Theory</th>
<th>System limit (Discovery)</th>
<th>ab (fb)</th>
<th>Belle II</th>
<th>LHCb</th>
<th>BELLE II/LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \rightarrow K^{(*)} l \nu)</td>
<td>(B_{cL} F_{L})</td>
<td>***</td>
<td>>50</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>**</td>
</tr>
<tr>
<td>(B \rightarrow X_{s+d} \gamma)</td>
<td>(A_{CP})</td>
<td>***</td>
<td>>50</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>-</td>
</tr>
<tr>
<td>(B \rightarrow X_{s} \gamma)</td>
<td>(A_{CP})</td>
<td>**</td>
<td>>50</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>(B \rightarrow K_{s}^{0})</td>
<td>(S_{L}^{e+})</td>
<td>**</td>
<td>>50</td>
<td>***</td>
<td>***</td>
<td>-</td>
<td>***</td>
</tr>
<tr>
<td>(B \rightarrow K_{L}^{0})</td>
<td>(S_{L}^{e-})</td>
<td>**</td>
<td>>50</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>(B \rightarrow \rho^{0})</td>
<td>(S_{L}^{e})</td>
<td>**</td>
<td>>50</td>
<td>***</td>
<td>***</td>
<td>-</td>
<td>***</td>
</tr>
<tr>
<td>(B \rightarrow X_{s} l^{+} l^{-})</td>
<td>(B_{cL} F_{L})</td>
<td>***</td>
<td>>50</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>(B \rightarrow X_{s} l^{+} l^{-})</td>
<td>(B_{cL} F_{L})</td>
<td>***</td>
<td>>50</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>(B \rightarrow K^{(*)} \tau^{+} \tau^{-})</td>
<td>(B_{cL} F_{L})</td>
<td>***</td>
<td>>50</td>
<td>***</td>
<td>***</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>(B \rightarrow X_{s} \gamma)</td>
<td>(B_{cL} F_{L})</td>
<td>**</td>
<td>1-5</td>
<td>***</td>
<td>*</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>(B \rightarrow K^{(*)} l \nu)</td>
<td>(B_{cL} F_{L})</td>
<td>**</td>
<td>>50</td>
<td>***</td>
<td>***</td>
<td>-</td>
<td>**</td>
</tr>
</tbody>
</table>

Also see talk by S. Sandilya for more on rare decays and lepton universality
CKM Improvement Projections

Current fitted parameters

Belle II + LHCb Projection

50 ab⁻¹
Projected to be able to resolve NP in CKM triangle

Current fitted parameters

Belle II + LHCb Projection

CKM Improvement Projections
Dark Sector Searches: Dark Photons and ALPs

Improved luminosity and calorimeter hermiticity can allow great improvement!

Projected Sensitivity
The Belle II experiment at SuperKEKB is running with a full detector.

- Physics run began Spring 2019 following 2 dedicated commissioning phases:
 - Vertex detector installed around IP before physics runs for precision measurements.
- 6.49 fb\(^{-1}\) collected so far, of a planned 50 ab\(^{-1}\).
- Wide ranging physics plan, including precision measurements, dark sector searches, and much more.
- Still ramping up to full luminosity:
 - Many exciting results to come!
Stay tuned for more!

Follow us on social media for updates and information!

Facebook: @belle2collab
Twitter: @belle2collab
Instagram: @belle2collab

JP: @belle2japan
Supplementary Material
CKM Improvement Projections

Current fitted parameters

Belle II + LHCb Projection

50 ab⁻¹
Moving to Phase 3 - Vertex Detector Installation
Dark $\gamma \rightarrow$ Invisible

- Light (GeV scale) hidden dark sector weakly coupled to SM by dark photon A'
- Experimental signature: only 1 high-energy photon in detector
- Needs single photon trigger
 - Not present in Belle
 - Only present of \sim10% of BaBar
 - Implemented for Phase 2
- \simNo true physics backgrounds
 - Only missing particle backgrounds:
 - Radiative bhabha, $\gamma\gamma$ events with one γ not reconstructed
Axion-Like Particles (ALPs)

- Pseudoscalars that couple to bosons
 - Can target photon coupling $g_{a\gamma\gamma}$

- Coupling not related to mass
 - Different from QCD axions

- Three-Photon signature
 - One γ from recoil
 - Pair from $a\rightarrow\gamma\gamma$

- Four calorimeter signatures
 - (Determined by displacement, θ of photon pair)
ALPs: Dark Sector Pseudoscalar Portal

- Only coupling to γ
- Coupling to $\gamma + Z$

Graphs showing the coupling of ALPs to γ and $\gamma + Z$ with varying masses and coupling constants.
Dark Sector Searches: Invisible Dark γ and ALPs

Vector: Dark γ → Invisible

Pseudoscalar: Axion-Like Particles
Dark Sector Searches: Invisible Dark γ and ALPs

Other searches possible!
- Magnetic Monopoles
- Invisible Z’, Z’ → LFV (e-μ coupling)
- Dark scalars
- Dark Higgs
- Off-shell A’ decays
- Even more…

Vector: Dark γ → Invisible

Pseudoscalar: Axion-Like Particles
Dark $\gamma \rightarrow$ Invisible: Prospects

Improved luminosity and calorimeter hermiticity can allow great improvement!
Dark $\gamma \rightarrow$ Visible dileptons: Heavier DM

Project sensitivity

Belle II TiP Report