

Status on the Search for $K_L^0 \rightarrow \pi^0 v \overline{v}$ with the KOTO Experiment

Melissa A. Hutcheson

University of Michigan On behalf of the KOTO Collaboration

- SM predicted Branching Ratio of (3.00 ± 0.30) x 10⁻¹¹
- Clean channel, small theoretical uncertainties (~1-2%)
- 2nd order FCNC that directly violates CP

- Origin of CP violation comes from **CKM matrix**
- $K_L^0 \rightarrow \pi^0 v \nabla$ corresponds to the height of the Unitary Triangle

- SM predicted Branching Ratio of (3.00 ± 0.30) x 10⁻¹¹
- Clean channel, small theoretical uncertainties (~1-2%)
- 2nd order FCNC that directly violates CP
- Good probe to search for **new physics** BSM

$K^+ \rightarrow \pi^+ v \overline{v}$ & Grossman-Nir Bound

- Charged decay equally as important (NA62) \rightarrow SM BR = (9.11 ± 0.72) x 10⁻¹¹
- Set indirect limit on $K_L^0 \rightarrow \pi^0 v \overline{v}$
 - → Grossman-Nir bound
- $BR(K_L^0 \to \pi^0 v \overline{v}) < 4.4 \times BR(K^+ \to \pi^+ v \overline{v}) \to BR(K_L^0 \to \pi^0 v \overline{v}) < 1.5 \times 10^{-9}$

$K_L^0 \rightarrow \pi^0 v \overline{v}$ Search History

S C C C

- First limits on BR set in early 90s
- Best experimental limit set by KOTO in 2018

APS DPF 2019, Northeastern University

Experimental Setup

- Located in Tokai, Japan at J-PARC
- 30 GeV protons \rightarrow stationary gold target

Experimental Setup

- Located in Tokai, Japan at J-PARC
- 30 GeV protons \rightarrow stationary gold target

APS DPF 2019, Northeastern University

Experimental Setup

Highly collimated "pencil" beam of $K_{_{I}}$, n, γ

Evacuated to ~10⁻⁵ Pa to suppress background

Distance from target to detector = 21.5m

Experimental Strategy

- Csl calorimeter observes 2γ from signal decay
- Difficulty → no charged particles and high efficiency required to detect all other particles
- Observe 2γ with large transverse momentum (P_t) and no other particles seen

KOTO Status

Results of 2015 data

Background source	Expected no. events
K _L Decays	
$K_L \rightarrow \pi^+ \pi^- \pi^0$	0.05 ± 0.02
$K_L \rightarrow 2\pi^0$	0.02 ± 0.02
Other K _L decays	0.03 ± 0.01
Neutron induced	
Hadron cluster on CsI	0.24 ± 0.17
Upstream π^0 from NCC	0.04 ± 0.03
Ον η	0.04 ± 0.02
Total background	0.42 ± 0.18

Largest background from neutrons hitting Csl

Improved previous limit (E391a) ~1 order of magnitude!

2016-2018 Improvements

- Inner Barrel (IB) installed to reduce $K_1 \rightarrow 2\pi^0$ background
 - Estimated suppression x1/3

25 layers of 5mm Scintillator and 24 layers of 1mm lead plates Additional 5 radiation lengths (X₀₎

- Upgraded Data Acquisition System
 - $\circ \qquad \text{Cluster finding in trigger} \rightarrow \\ \text{to improve DAQ efficiency}$

APS DPF 2019, Northeastern University

2016-2018 Improvements

- Scatter neutrons off of Aluminum plate 0
- Implemented in 2015 Ο

Shaft Bellows Beam **Tungsten Target** Aluminum Target (2mmø X 8mm) (80X80X10mm³

Motor

Collect 8x larger sample of runs to study neutrons to improve n/y discrimination

neutron

10mm Al

Fig. Movable Al target

APS DPF 2019, Northeastern University

scattered

neutron

2016-2018 Improvements

d s v

- New cuts developed to reduce neutron background
 - Deep learning: convolutional neural network with cluster based inputs (energy, time)
 - (1/1500) BG reduction with 90% signal acceptance

APS DPF 2019, Northeastern University

Analysis

d s v

- 1) Signal reconstruction
- 2) Normalization
- 3) Background estimation and reduction
- Three variables needed to calculate BR
 - Number of signal events
 - Number of K_L^0 s generated
 - Signal acceptance

$$BR(K_L^0 \to \pi^0 \nu \bar{\nu}) = \frac{N_{\text{signal}}}{N_{K_L^0} \times A_{\text{signal}}}$$

• Single Event Sensitivity

$$SES = \frac{1}{N_{K_L^0} \times A_{\rm signal}}$$

Signal Reconstruction

• Reconstruct decay vertex (Z position) and transverse momentum (P_t)

APS DPF 2019, Northeastern University

Normalization

d S V

- Calculate the number of ${\it K_L^0}$ s at the beam exit, $N_{K_L^0}$
- Normalization modes also used for
 - Measure kaon mass $(3\pi^0)$
 - Measure z vertex of kaon
 - Also used for data checking and evaluating kinematic and veto cut efficiencies
 - Evaluate MC reproducibility of data
- Signal acceptance, A_{signal}
 - Geometric acceptance of detectors
 - Kinematic and veto efficiencies of cuts

APS DPF 2019, Northeastern University

Background Analysis

- Charged vetos remove events with charged particles (~80%)
- Photon vetos must detect other K_i^0 decay modes

 $egin{aligned} & K^0_L
ightarrow 3\pi^0 \ & K^0_L
ightarrow 2\pi^0 \ & K^0_L
ightarrow \pi^+\pi^-\pi^0 \end{aligned}$

• Detailed MC studies of various background modes

2016-2018 Analysis Status

S C C

- 1.5x more data than 2015 (accumulated POT ~ 3.1×10^{19})
- SES improved x1.6 from SES = 1.3×10^{-9} in 2015
- Background is well controlled

Outlook

- Finalizing analysis → will present new results at Kaon 2019 conference in mid September
- Expect to push into the realm of new physics!

Supplemental

KOTO Beyond 2018

•Upgrade of detectors to further enhance background reduction

•MPPC dual ended readout of CsI crystals (2018) with Experimental run in 2019!

→ additional readout of 256 channels

KOTO Beyond 2018

Upgrade of detectors to further enhance background reduction

•MPPC dual ended readout of CsI crystals (2018) with Experimental run in 2019!

1/35 neutron reduction 90% γ efficiency

Signal Distribution

Signal Distribution

KOTO Detectors

- Cesium Iodide (CsI) calorimeter
- Main detector for KOTO
- 2716 channels read out by PMTs
 - 2.5 cm x 2.5 cm small crystals
 - 5 cm x 5 cm large crystals
- Timing and energy information for each crystal

- Hermetic veto detectors around decay Volume
 - ~1000 channels

Csl calorimeter

- Energy resolution (σ_E/E) = 0.99 %/E_{GeV}^{1/2}
- Timing resolution (σ_t/E) = 0.13 /E_{GeV}^{1/2} ns
- Position resolution (σ_d/E) = ~2.5 $/E_{GeV}^{1/2}$ mm

Shape χ^2 (first run) compares observed energy deposited with the expected energy derived from MC. The sum is taken over 27 x 27 crystals around the cluster center.

• (1/300) BG reduction with 80% signal acceptance

Cluster Shape Discrimination (CSD) uses energy and timing information from the CsI as inputs into a Neural Net

- (1/1500) BG reduction with 90% signal acceptance
- Main inputs: Energy χ^2 , Cluster E_{difference}, timing χ^2 , Cluster COE, Cluster RMS, crystal energy probability...

Pulse Shape Discrimination (PSD) cut uses waveform information to discriminate photon and hadronic showers

- Fitted waveforms with asymmetric Gaussian, obtained templates, and calculated likelihood ratio from fit parameters taken from control and photon samples
- Difference in the tail of hadronic showers corresponds to a larger (a)

$$A(t) = |A| exp\left(-\frac{(t-t_0)^2}{2\sigma(t)^2}\right)$$
$$\sigma(t) = \sigma_0 + a(t-t_0)$$

Fitted waveform with asymmetric Gaussian

Pulse Shape Discrimination (PSD) cut uses waveform information to discriminate photon and hadronic showers

- Fitted waveforms with asymmetric Gaussian, obtained templates, and calculated likelihood ratio from fit parameters taken from control and photon samples
- Difference in the tail of hadronic showers corresponds to a larger (a)
- (1/10) BG reduction with 90% signal acceptance

Signal Region

$K_L^0 \rightarrow \pi^0 v \overline{v}$ Feynman Diagrams

DAQ

DAQ Logic Signal Flow

Normalization

2013 Data Analysis

- 2013 data analysis revealed largest contribution to background is neutrons hitting detector material $BP(K^{0} \rightarrow \pi^{0}V\overline{v}) < 5.1 \times 10^{-8} @ 90^{\circ}$
 - $BR(K_{L}^{0} \rightarrow \pi^{0} v \overline{v}) < 5.1 \times 10^{-8} @ 90\%$
- New detector changes to reduce neutron background
 - Improved surface alignment of collimators; BPM (Beam Profile Monitor)
 - Vacuum window replaced
 - Specific experimental runs with aluminum target to study neutron background

