Status on the Search for $K_L^0 \rightarrow \pi^0 \nu \bar{\nu}$ with the KOTO Experiment

Melissa A. Hutcheson
University of Michigan
On behalf of the KOTO Collaboration
$K_L^0 \rightarrow \pi^0 \nu\bar{\nu}$

- SM predicted Branching Ratio of $(3.00 \pm 0.30) \times 10^{-11}$
- Clean channel, small theoretical uncertainties (~1-2%)
- 2nd order FCNC that directly violates CP
- Origin of CP violation comes from CKM matrix
- $K_L^0 \rightarrow \pi^0 \nu\bar{\nu}$ corresponds to the height of the Unitary Triangle

$V_{us} \ast V_{ud}$

$V_{cd} \ast V_{cs}$

$V_{ts} \ast V_{td}$

$V_{cs} \ast V_{cd}$

Weak eigenstates

$$\begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d \\ s \\ b \end{bmatrix}$$

CKM

Mass eigenstates

$KOTO$
\(K_L^0 \rightarrow \pi^0 \nu \nu \)

- SM predicted Branching Ratio of \((3.00 \pm 0.30) \times 10^{-11}\)
- Clean channel, small theoretical uncertainties (~1-2%)
- 2nd order FCNC that directly violates CP

- Good probe to search for \textit{new physics} BSM

\[\begin{align*}
\bar{d} & \rightarrow d \\
\bar{d} & \rightarrow d \\
\bar{s} & \rightarrow d \\
\bar{s} & \rightarrow d \\
\bar{t} & \rightarrow d \\
\bar{t} & \rightarrow d \\
\bar{H}^- & \rightarrow \nu \bar{\nu} \\
\bar{H}^- & \rightarrow \nu \bar{\nu} \\
\bar{X} & \rightarrow \nu \bar{\nu} \\
\bar{X} & \rightarrow \nu \bar{\nu}
\end{align*} \]
$K^+ \rightarrow \pi^+ \bar{\nu} \bar{\nu}$ & Grossman-Nir Bound

- Charged decay equally as important (NA62) → SM BR = $(9.11 \pm 0.72) \times 10^{-11}$
- Set indirect limit on $K^0_L \rightarrow \pi^0 \bar{\nu} \bar{\nu}$ → Grossman-Nir bound
- $\text{BR}(K^0_L \rightarrow \pi^0 \bar{\nu} \bar{\nu}) < 4.4 \times \text{BR}(K^+ \rightarrow \pi^+ \bar{\nu} \bar{\nu}) \rightarrow \text{BR}(K^0_L \rightarrow \pi^0 \bar{\nu} \bar{\nu}) < 1.5 \times 10^{-9}$

E949 (2009):
BR = $(1.7 \pm 1.1) \times 10^{-10}$
BR < 3.4×10^{-10} @ 90% CL

NA62 (2018):
BR < 11×10^{-10} @ 90% CL
$K^0_L \rightarrow \pi^0 \nu \bar{\nu}$ Search History

- First limits on BR set in early 90s
- Best experimental limit set by KOTO in 2018

$$\text{BR}(K^0_L \rightarrow \pi^0 \nu \bar{\nu}) < 3.0 \times 10^{-9} \text{ (@ 90\% CL)}$$

Experimental Setup

- Located in Tokai, Japan at J-PARC
- 30 GeV protons → stationary gold target
Experimental Setup

- Located in Tokai, Japan at J-PARC
- 30 GeV protons → stationary gold target
Experimental Setup

Highly collimated “pencil” beam of K_L, n, γ

Evacuated to $\sim 10^{-5}$ Pa to suppress background

Distance from target to detector = 21.5 m
Experimental Strategy

- CsI calorimeter observes 2γ from signal decay
- Difficulty → no charged particles and high efficiency required to detect all other particles
- Observe 2γ with large transverse momentum (P_t) and no other particles seen
KOTO Status

2015
Published results

2016-2018
Finalizing analysis

2019
New data

Accumulated P.O.T.

10^18
100
90
80
70
60
50
40
30
20
10
0

2013
First physics run

Beam Power (kW)

80
60
40
20
0

2012 Dec
2013 Dec
2014 Dec
2016 Jan
2016 Dec
2017 Dec
2018 Dec

M. Hutcheson
APS DPF 2019, Northeastern University
Results of 2015 data

\[\text{BR}(K_L^0 \rightarrow \pi^0 \nu\bar{\nu}) < 3.0 \times 10^{-9} \text{ (90\% CL)} \]

<table>
<thead>
<tr>
<th>Background source</th>
<th>Expected no. events</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_L) Decays</td>
<td></td>
</tr>
<tr>
<td>(K_L \rightarrow \pi^+\pi^-\pi^0)</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td>(K_L \rightarrow 2\pi^0)</td>
<td>0.02 ± 0.02</td>
</tr>
<tr>
<td>Other (K_L) decays</td>
<td>0.03 ± 0.01</td>
</tr>
<tr>
<td>Neutron induced</td>
<td></td>
</tr>
<tr>
<td>Hadron cluster on CsI</td>
<td>0.24 ± 0.17</td>
</tr>
<tr>
<td>Upstream (\pi^0) from NCC</td>
<td>0.04 ± 0.03</td>
</tr>
<tr>
<td>CV (\eta)</td>
<td>0.04 ± 0.02</td>
</tr>
<tr>
<td>Total background</td>
<td>0.42 ± 0.18</td>
</tr>
</tbody>
</table>

Largest background from neutrons hitting CsI

Improved previous limit (E391a)

~1 order of magnitude!
2016-2018 Improvements

- Inner Barrel (IB) installed to reduce $K_L \rightarrow 2\pi^0$ background
 - Estimated suppression x1/3

- Upgraded Data Acquisition System
 - Cluster finding in trigger → to improve DAQ efficiency

M. Hutcheson
APS DPF 2019, Northeastern University
2016-2018 Improvements

- Specific runs to study neutron induced events
 - Scatter neutrons off of Aluminum plate
 - Implemented in 2015

- Collect 8x larger sample of runs to study neutrons to improve n/γ discrimination
2016-2018 Improvements

- New cuts developed to reduce neutron background
 - Deep learning: convolutional neural network with cluster based inputs (energy, time)
 - $(1/1500)$ BG reduction with 90% signal acceptance
 - Pulse shape discrimination of n/γ by Fourier transform

\[
X_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i kn}{N}}
\]
Analysis

1) Signal reconstruction
2) Normalization
3) Background estimation and reduction

● Three variables needed to calculate BR
 ○ Number of signal events
 ○ Number of K_L^0s generated
 ○ Signal acceptance

\[
BR(K_L^0 \to \pi^0 \nu \bar{\nu}) = \frac{N_{\text{signal}}}{N_{K_L^0} \times A_{\text{signal}}}
\]

● Single Event Sensitivity

\[
SES = \frac{1}{N_{K_L^0} \times A_{\text{signal}}}
\]
Signal Reconstruction

- Identify $K^0_L \rightarrow \pi^0 \nu \bar{\nu}$ events to calculate N_{signal} to reconstruct decay vertex of the pion
- 2 clusters hit on CsI
 - Position
 - Energy
- Constraints
 - π^0 mass
 - Decay position on beamline

Reconstruct decay vertex (Z position) and transverse momentum (P_T)

- Monte Carlo sample of $K^0_L \rightarrow \pi^0 \nu \bar{\nu}$ decay

$$\cos \theta = 1 - \frac{M_{\pi^0}^2}{2E_{\gamma_1}E_{\gamma_2}}$$

$$P_{T_{\pi^0}} = \sum_{i=1,2} E_{\text{cluster}} \frac{r_i^2}{\sqrt{r_i^2 + \Delta Z^2}}$$

M. Hutcheson

APS DPF 2019, Northeastern University
Normalization

- Calculate the number of K_L^0's at the beam exit, $N_{K_L^0}$
- Normalization modes also used for
 - Measure kaon mass ($3\pi^0$)
 - Measure z vertex of kaon
 - Also used for data checking and evaluating kinematic and veto cut efficiencies
 - Evaluate MC reproducibility of data
- Signal acceptance, A_{signal}
 - Geometric acceptance of detectors
 - Kinematic and veto efficiencies of cuts

$K_L \rightarrow 2\gamma$

$K_L \rightarrow 3\pi^0$

$K_L \rightarrow 2\pi^0$
Background Analysis

- **Charged vetos** remove events with charged particles (~80%)
- **Photon vetos** must detect other K_L^0 decay modes

 $K_L^0 \rightarrow 3\pi^0$
 $K_L^0 \rightarrow 2\pi^0$
 $K_L^0 \rightarrow \pi^+\pi^-\pi^0$

- Detailed MC studies of various background modes

Diagram Elements:
- FB
- NCC
- IB
- MB
- CV
- CC04
- CC05
- CC06
- Old BHCV
- BHPV
- BHGC

Legend:
- Green: Photon Veto
- Orange: Neutron Counter
- Blue: Charged Particle Veto
- Red: CsI Photon Detector

Equation:

\[
\pi^0 \rightarrow \gamma\gamma
\]

\[
K_L
\]
2016-2018 Analysis Status

- 1.5x more data than 2015 (accumulated POT ~ 3.1×10^{19})
- SES improved x1.6 from SES = 1.3×10^{-9} in 2015
- Background is well controlled

Estimated SES = 8.2×10^{-10}

<table>
<thead>
<tr>
<th>Event</th>
<th># of BG inside signal region</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_L \rightarrow 2\pi^0$</td>
<td>0.09±0.09</td>
</tr>
<tr>
<td>$K_L \rightarrow \pi^+\pi^-\pi^0$</td>
<td>0.02±0.02</td>
</tr>
<tr>
<td>Hadron cluster</td>
<td>0.07±0.13</td>
</tr>
<tr>
<td>CV-pi0</td>
<td>< 0.19</td>
</tr>
<tr>
<td>CV-eta</td>
<td>0.02±0.01</td>
</tr>
<tr>
<td>Total</td>
<td>0.20±0.16</td>
</tr>
</tbody>
</table>
Outlook

- Finalizing analysis → will present new results at Kaon 2019 conference in mid September
- Expect to push into the realm of new physics!

![Graph showing branching ratio limits over years with data points for various experiments including Grossman-Nir and Standard Model limits.](image-url)
Thank You

Dec '17 collaboration meeting
Supplemental
KOTO Beyond 2018

- Upgrade of detectors to further enhance background reduction

- MPPC dual ended readout of CsI crystals (2018) with Experimental run in 2019!

Attach 4080 MPPCs to 2800 crystals

6x6 mm² MPPC for small crystal

Four MPPCs for large crystal

Grouping readout of 10x10cm² region → additional readout of 256 channels
KOTO Beyond 2018

- Upgrade of detectors to further enhance background reduction

 - MPPC dual ended readout of CsI crystals (2018) with Experimental run in 2019

\[\Delta T = T_{MPPC} - T_{PMT} \]

large \(\Delta T \) \(\Leftrightarrow \) deep \(E \) deposit

\(\Delta T \) distribution (Data) \(\Delta T \) distribution (MC)

preliminary

n redc. eff. = 4.03%
cut at = -203 ns

1/35 neutron reduction
90\% \(\gamma \) efficiency
Signal Distribution

\[K_{l} \rightarrow \pi^{0} \nu \bar{\nu} \text{ decay} \]

target

neutral pencil beam

- proton

\[\text{Rec. } Z \text{ (mm)} \]

w/o cuts

\[\text{w/o cuts} \]

\[\text{Signal Box} \]

\[\text{Rec. } P_{t} \]

-Assuming 2\(\gamma \) from \(\pi^{0} \)

Calculate decay vertex

\[M^{2}(\pi^{0}) = 2E_{1}E_{2}(1 - \cos \theta) \]

Calculate \(\pi^{0} \) transverse momentum

\[\text{Rec. } \pi^{0} P_{t} \text{ Momentum (MeV/c)} \]

blinded region

blinded region
Signal Distribution

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ decay

```

Calculating $2\gamma$ from $\pi^0$

Calculate decay vertex

$M^2(\pi^0) = E_1 E_2(1 - \cos \theta)$

Calculate $\pi^0$ transverse momentum
```

$K_L^0 \rightarrow \pi^0 \nu \bar{\nu}$

w/ kinematic and veto cuts

w/ cuts

blinded region

blinded region
KOTO Detectors

- Cesium Iodide (CsI) calorimeter
- Main detector for KOTO
- 2716 channels read out by PMTs
 - 2.5 cm x 2.5 cm small crystals
 - 5 cm x 5 cm large crystals
- Timing and energy information for each crystal
- Hermetic veto detectors around decay Volume
 - ~1000 channels

Energy resolution \((\sigma_E/E) = 0.99 \%/E_{\text{GeV}}^{1/2} \)
Timing resolution \((\sigma_t/E) = 0.13 /E_{\text{GeV}}^{1/2} \) ns
Position resolution \((\sigma_d/E) = \sim 2.5 /E_{\text{GeV}}^{1/2} \) mm
Discrimination methods

Shape χ^2 (first run) compares observed energy deposited with the expected energy derived from MC. The sum is taken over 27×27 crystals around the cluster center.

$\chi^2 = \frac{1}{N} \sum \left(\frac{e_i}{E_{inc}} - \mu \right)^2$

- E_{inc}: measured photon energy
- e_i: measured deposit energy in ith crystal in a cluster
- μ: expected mean e/E
- σ: expected RMS of e/E

(1/300) BG reduction with 80% signal acceptance
Discrimination methods

Cluster Shape Discrimination (CSD) uses energy and timing information from the CsI as inputs into a Neural Net:

- (1/1500) BG reduction with 90% signal acceptance

- Main inputs: Energy χ^2, Cluster $E_{\text{difference}}$, timing χ^2, Cluster COE, Cluster RMS, crystal energy probability...

![Energy distribution](image1)

![Timing distribution](image2)

![Neural Net outcome of shape cut](image3)
Discrimination methods

Pulse Shape Discrimination (PSD) cut uses waveform information to discriminate photon and hadronic showers

- Fitted waveforms with asymmetric Gaussian, obtained templates, and calculated likelihood ratio from fit parameters taken from control and photon samples
- Difference in the tail of hadronic showers corresponds to a larger a

\[
A(t) = |A|e^{\frac{(t-t_0)^2}{2\sigma(t)^2}}
\]

\[
\sigma(t) = \sigma_0 + a(t - t_0)
\]

Fitted waveform with asymmetric Gaussian
Discrimination methods

Pulse Shape Discrimination (PSD) cut uses waveform information to discriminate photon and hadronic showers

- Fitted waveforms with asymmetric Gaussian, obtained templates, and calculated likelihood ratio from fit parameters taken from control and photon samples

- Difference in the tail of hadronic showers corresponds to a larger (a)

- (1/10) BG reduction with 90% signal acceptance
Signal Region

\(K_L \rightarrow \pi^+\pi^-\pi^0 \) MC (Loose cut condition)

Slope to suppress \(K_L \rightarrow \pi^+\pi^-\pi^0 \) BG

\[Z = 3000 \quad Z = 4700 \]

\(A_{\text{sig}} \quad N_{\text{BG}} \)

-15% -0.04

\(\ast \) same as 2013 run

+3% +0.04

+23% +0.30

\(Z = 5000 \)
$K_L^0 \rightarrow \pi^0 \nu\bar{\nu}$ Feynman Diagrams
DAQ Logic Signal Flow

1. **Trigger & no veto**
 - **>100 clocks since previous L1preA**
 - Yes: **Room in L2 memory**
 - No: **L1 Raw**

2. **Room in L2 buffers**
 - Yes: **L1 pre Accept**
 - Yes: **L1 Accept 5 clocks**
 - No: **L1 Reject**
 - No: **L2 buffer deadtime**

3. **L2 buffer deadtime**
 - Yes: **L2 Reject**
 - No: **L2 memory deadtime**

4. **L2 memory deadtime**
 - Yes: **CDT inhibit deadtime**
 - Yes: **L2 Reject**
 - No: **CDT deadtime**
 - No: **1, 3, 5, ≥ 7**

5. **Number of Clusters**
 - 4 or 6: **L1 Accept 3 clocks**
 - 2: **L1 Accept 5 clocks**

6. **Transmit L1 Pre-Accept**
 - **Physics Trigger**
 - CoE and CDT NOT applied

7. **Send to L3**

8. **Send to L2**

9. **Pass CDT**
 - Yes: **Send to L2**
 - No: **L1 Reject**

10. **L1 Accept 5 clocks**
 - **Overlap with L1A (12 clocks)**
 - **L1 Accept**
 - Yes: **Send to L2**
 - No: **L1 Reject**
 - **L1 pre Accept**
 - Yes: **Send to L2**
 - No: **L1 Reject**

11. **Pass CoE**
 - Yes: **Send to L3**
 - No: **L2 Reject**

Normalization Minimum Bias Laser LED

Deadtime

Overlap with L1A

Reject

Accept
2013 Data Analysis

- 2013 data analysis revealed largest contribution to background is neutrons hitting detector material
 \[BR(K^0_L \rightarrow \pi^0 \nu \bar{\nu}) < 5.1 \times 10^{-8} \text{ @ 90\% CL} \]

- New detector changes to reduce neutron background
 - Improved surface alignment of collimators; BPM (Beam Profile Monitor)
 - Vacuum window replaced
 - Specific experimental runs with aluminum target to study neutron background

- Beam Hole Charge Veto
 - Suppress \(\pi^+ \pi^- \pi^0 \)

- Beam Hole Guard Counter
 - Tag photons escaping near edge of beam hole