Reevaluating Uncertainties in $\bar{B} \to X_s\gamma$ Decay

AYESH GUNAWARDANA

Wayne State University

July 30th, 2019

Based on
A.G and Gil Paz “Reducing Uncertainties in $\bar{B} \to X_s\gamma$”
(To appear)
Introduction
Why $\bar{B} \rightarrow X_s \gamma$
Why $\bar{B} \rightarrow X_s \gamma$

- $\bar{B} \rightarrow X_s \gamma$ decay is an important **New Physics** probe
Why $\bar{B} \rightarrow X_s \gamma$

- $\bar{B} \rightarrow X_s \gamma$ decay is an important **New Physics** probe
 - It is suppressed at tree level in SM
 - Can receive contributions from SM extensions.

Figure: $b \rightarrow s \gamma$ flavor changing neural current (FCNC) in SM
Why $\bar{B} \rightarrow X_s \gamma$

- $\bar{B} \rightarrow X_s \gamma$ decay is an important **New Physics** probe
 - It is suppressed at tree level in SM
 - Can receive contributions from SM extensions.

Figure: $b \rightarrow s \gamma$ flavor changing neutral current (FCNC) in SM

- SM extensions modify the $C_{7\gamma}$ Wilson coefficient
Why $\bar{B} \to X_s \gamma$

- $\bar{B} \to X_s \gamma$ decay is an important **New Physics** probe
 - It is suppressed at tree level in SM
 - Can receive contributions from SM extensions.

Figure: $b \to s \gamma$ flavor changing neural current (FCNC) in SM

- SM extensions modify the $C_{7\gamma}$ Wilson coefficient
- CP violation in $\bar{B} \to X_s \gamma$ can be enhanced by new physics
Photon production

Photon can be produced directly:

\[Q_7^\gamma = -\frac{e}{\pi} \frac{\sigma_{\mu\nu} F_{\mu\nu} (1 + \gamma_5)}{2 m_b \bar{s}} \]

Also, gluon or quark pair can convert to photon

\[Q_8^g = -\frac{e}{\pi} \frac{\sigma_{\mu\nu} G_{\mu\nu} (1 + \gamma_5)}{2 m_b \bar{s}} \]

\[Q_8^{q_1} = (\bar{q}_b V^\text{A} - A^\text{V} \bar{s} q_b)^V - A^\text{A} \]

AYESH GUNAWARDANA
Wayne State University
Reevaluating Uncertainties in $\bar{B} \rightarrow X_s \gamma$ Decay
Photon production

- Photon can be produced directly:

\[Q_{\gamma\gamma} = \frac{-e}{8\pi^2} m_b \bar{s}s \sigma_{\mu\nu} F^{\mu\nu} (1 + \gamma_5) b \]
Photon production

- Photon can be produced directly:

\[Q_{7\gamma} = \frac{-e}{8\pi^2}m_b\bar{s}\sigma_{\mu\nu}F^{\mu\nu}(1 + \gamma_5)b \]

- Also, gluon or quark pair can convert to photon

\[Q_{8g} = \frac{-e}{8\pi^2}m_b\bar{s}\sigma_{\mu\nu}G^{\mu\nu}(1 + \gamma_5)b \]

\[Q_1^q = (\bar{q}b)_{V-A}(\bar{s}q)_{V-A} \]
Effective Lagrangian

• The effective Lagrangian to describe $\bar{B} \to X_s \gamma$
The effective Lagrangian to describe $\bar{B} \rightarrow X_s \gamma$

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{q=u,c} V_{qb}^* V_{qs}$$

$$+ \left(C_1 Q_1^q + \sum_{i=2}^{6} C_i Q_i + C_7 \gamma Q_7 \gamma + C_{8g} Q_{8g} \right) + \text{h.c.}$$
Effective Lagrangian

- The effective Lagrangian to describe $\bar{B} \to X_s \gamma$

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{q=u,c} V_{qb}^* V_{qs}$$

$$\left(C_1 Q_1^q + \sum_{i=2}^{6} C_i Q_i + C_{7\gamma} Q_{7\gamma} + C_{8g} Q_{8g} \right) + \text{h.c.}$$

- Most important operators are $Q_{7\gamma}$, Q_{8g} and Q_1^q.

- $Q_{7\gamma} = \frac{-e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} F^{\mu\nu}(1 + \gamma_5) b$

- $Q_1^q = (\bar{q} b)_{V-A}(s q)_{V-A}$

- $Q_{8g} = \frac{-e}{8\pi^2} m_b \bar{s} \sigma_{\mu\nu} G^{\mu\nu}(1 + \gamma_5) b$
Effective Lagrangian

- The effective Lagrangian to describe $\bar{B} \rightarrow X_s \gamma$

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{q=u,c} V_{qb}^* V_{qs}$$

$$\left(C_1 Q_1^q + \sum_{i=2}^{6} C_i Q_i + C_7\gamma Q_7\gamma + C_{8g} Q_{8g} \right) + \text{h.c.}$$

- Most important operators are $Q_7\gamma$, Q_{8g} and Q_1^q.

- $Q_7\gamma = -\frac{e}{8\pi^2} m_b \bar{s}s \sigma_{\mu\nu} F^{\mu\nu} (1 + \gamma_5) b$

- $Q_1^q = (\bar{q}b)_{\nu-A}(\bar{s}q)_{\nu-A}$, $Q_{8g} = -\frac{e}{8\pi^2} m_b \bar{s}s \sigma_{\mu\nu} G^{\mu\nu} (1 + \gamma_5) b$

- At leading power: Only $Q_7\gamma - Q_7\gamma$ contributes to decay rate
- At $1/m_b$: Γ get $Q_1 - Q_7\gamma$, $Q_{8g} - Q_{8g}$ and $Q_7\gamma - Q_{8g}$ contributions
Decay rate

- World average for experimental value:

\[\mathcal{B}(B \to X_s \gamma) (E_\gamma > 1.6 \text{ GeV}) = (3.32 \pm 0.15) \times 10^{-4} \]

[Y. Amhis et. al. EPJC 77, 895 (2017)]

- NNLO prediction

\[\Gamma(B \to X_q \gamma) = \Gamma(b \to X^p_q \gamma) + \delta \Gamma_{\text{nonp}} \]

Perturbatively calculable

\[\mathcal{O}(\frac{\Lambda_{\text{QCD}}}{m_b}) \]

- SM prediction (2015) [Misiak et. al. PRL 114, 221801 (2015)]

\[\mathcal{B}^{\text{SM}}_{s\gamma} = (3.36 \pm 0.23) \times 10^{-4} \]

for \(E_\gamma > 1.6 \text{ GeV} \)
Decay rate

• World average for experimental value:

\[\mathcal{B}(B \rightarrow X_s \gamma)(E_{\gamma} > 1.6 \text{ GeV}) = (3.32 \pm 0.15) \times 10^{-4} \]

[Y. Amhis et al. EPJC 77, 895 (2017)]

• NNLO prediction

\[
\Gamma(B \rightarrow X_q \gamma) = \Gamma(b \rightarrow X_q^p \gamma) + \delta\Gamma_{\text{nonp}}
\]

\[\text{Perturbatively calculable} \]

\[\text{O}(\frac{\Lambda_{QCD}}{m_b}) \]

• SM prediction (2015) [Misiak et al. PRL 114, 221801 (2015)]

\[\mathcal{B}_{s\gamma}^{\text{SM}} = (3.36 \pm 0.23) \times 10^{-4} \]

for \(E_{\gamma} > 1.6 \text{ GeV} \)

• \(\delta\Gamma_{\text{nonp}} \equiv \text{Non-perturbative contribution} \)

- The largest contribution to the error 5% from \(\text{O}(\frac{\Lambda_{QCD}}{m_b}) \)
Order $1/m_b$ power corrections to $\Gamma(\bar{B} \to X_s\gamma)$

- Non-perturbative effects arise from **Resolved Photon Contributions**

$$\Delta \Gamma \sim \begin{array}{l}
\underbrace{J} \\
\text{Perturbatively calculable}
\end{array} \otimes \begin{array}{l}
\underbrace{h} \\
\text{Non perturbative}
\end{array}$$
Order $1/m_b$ power corrections to $\Gamma(\bar{B} \rightarrow X_s\gamma)$

- Non-perturbative effects arise from **Resolved Photon Contributions**

$$\Delta \Gamma \sim \begin{cases} \bar{J} \otimes h \\ \text{Perturbatively calculable} \quad \text{Non perturbative} \end{cases}$$

- $Q_{7\gamma} - Q_{8g}$

- $Q_{8g} - Q_{8g}$

- $Q_1 - Q_{7\gamma}$
Contribution to the non-perturbative error

• 2010 estimates for non-perturbative contribution to error
 - From $Q_1^c - Q_7^\gamma \in [-1.7, +4.0]\%$
 - From $Q_8^g - Q_8^g \in [-0.3, +1.9]\%$
 - From $Q_7^\gamma - Q_8^g \in [-4.4, +5.6]\%$

Now $Q_1^c - Q_7^\gamma$ is the largest contribution to the error!
Can we reduce it?
Contribution to the non-perturbative error

- 2010 estimates for non-perturbative contribution to error
 - From $Q_1^c - Q_7^\gamma \in [-1.7, +4.0]\%$
 - From $Q_{8g} - Q_{8g} \in [-0.3, +1.9]\%$
 - From $Q_{7\gamma} - Q_{8g} \in [-4.4, +5.6]\%$

- The contribution from $Q_{7\gamma} - Q_{8g}$
 - Obtained on experiment with 95% confidence level range
Contribution to the non-perturbative error

- 2010 estimates for non-perturbative contribution to error
 - From $Q_1^c - Q_7\gamma \in [-1.7, +4.0]\%$
 - From $Q_{8g} - Q_{8g} \in [-0.3, +1.9]\%$
 - From $Q_{7\gamma} - Q_{8g} \in [-4.4, +5.6]\%$

- The contribution from $Q_{7\gamma} - Q_{8g}$
 - Obtained on experiment with 95% confidence level range

 \[[M. Benzke, S. J. Lee, M. Neubert and G. Paz JHEP 1008, 099(2010)] \]
 - New Belle result for $Q_{7\gamma} - Q_{8g}$ contribution $\sim 2\%$

 \[[S. Watanuki et. al. PRD 99, 032012(2019)] \]
Contribution to the non-perturbative error

- 2010 estimates for non-perturbative contribution to error
 - From $Q_1^c - Q_7^\gamma \in [-1.7, +4.0]\%$
 - From $Q_8^g - Q_8^g \in [-0.3, +1.9]\%$
 - From $Q_7^\gamma - Q_8^g \in [-4.4, +5.6]\%$

- The contribution from $Q_7^\gamma - Q_8^g$
 - Obtained on experiment with 95% confidence level range
 \[[M. Benzke, S. J. Lee, M. Neubert and G. Paz JHEP 1008, 099(2010)] \]
 - New Belle result for $Q_7^\gamma - Q_8^g$ contribution $\sim 2\%$
 \[[S. Watanuki et. al. PRD 99, 032012(2019)] \]

- Now $Q_1^c - Q_7^\gamma$ is the largest contribution to the error!
 Can we reduce it?
The contribution to the error from $Q_1^c - Q_7^\gamma$ is given by

$$\frac{C_1 \Lambda_{17}}{C_7^\gamma m_b}$$
The contribution to the error from $Q_1^c - Q_7 \gamma$ is given by

$$\frac{C_1 \Lambda_{17}}{C_7 \gamma m_b}$$

where

$$\Lambda_{17} = e_c \text{Re} \int_{-\infty}^{\infty} \frac{d\omega_1}{\omega_1} \left[1 - F \left(\frac{m_c^2 - i\varepsilon}{m_b\omega_1} \right) + \frac{m_b\omega_1}{12m_c^2} \right]$$

perturbative

$$h_{17}(\omega_1)$$

non-perturbative

Need a new model for h_{17} to reduce the error.

- New information on moments of h_{17}: constrain new model
- What can we learn from moments?
$Q_1^c - Q_7\gamma$ contribution

- The contribution to the error from $Q_1^c - Q_7\gamma$ is given by

$$\frac{C_1 \Lambda_{17}}{C_{7\gamma} m_b}$$

where

$$\Lambda_{17} = e_c \text{Re} \int_{-\infty}^{\infty} \frac{d\omega_1}{\omega_1} \left[1 - F \left(\frac{m_c^2 - i\varepsilon}{m_b\omega_1} \right) + \frac{m_b\omega_1}{12 m_c^2} \right]$$

- Need a new model for h_{17} to reduce the error
 - New information on moments of h_{17}: constrain new model
 - What can we learn from moments?
Moments of h_{17}
Definition of h_{17}

- h_{17} can be thought of as a gluon PDF of a B meson
Definition of h_{17}

- h_{17} can be thought of as a gluon PDF of a B meson
 - Non-local operator matrix element
 - Describe the hadronic effects of the process
Definition of h_{17}

- h_{17} can be thought of as a gluon PDF of a B meson
 - Non-local operator matrix element
 - Describe the hadronic effects of the process

$$h_{17}(\omega_1) =$$

$$= \int \frac{dr}{2\pi} e^{-i\omega_1 r} \langle \bar{B} | (\bar{h} S_{\bar{n}})(0) \gamma(1 + \gamma_5) i \gamma^\perp \bar{n}_\beta (S_{\bar{n}} g G^{\alpha\beta} S_{\bar{n}})(r \bar{n})(S_{\bar{n}}^\dagger h)(0) | \bar{B} \rangle$$

$$= \frac{2M_B}{2M_B}$$

- $S_n(x)$ is the Wilson line
Definition of h_{17}

- h_{17} can be thought of as a gluon PDF of a B meson
 - Non-local operator matrix element
 - Describe the hadronic effects of the process

$$h_{17}(\omega_1) =$$

$$= \int \frac{dr}{2\pi} e^{-i\omega_1 r} \left\langle \bar{B} | (\bar{\gamma} S \bar{n})(0) \gamma(1 + \gamma_5)i \gamma^\perp \bar{n}_\beta (S \bar{n} g G^{\alpha\beta} S \bar{n})(r \bar{n})(S^\dagger \bar{n} h)(0) | \bar{B} \right\rangle / 2 M_B$$

- $S_n(x)$ is the Wilson line

$$S_n(x) = P \exp \left(ig \int_{-\infty}^{0} du \cdot A_s(x + un) \right)$$

- $n^\mu \equiv (1, 0, 0, 1) \text{ and } \bar{n}^\mu \equiv (1, 0, 0, -1)$
Moments of h_{17}

- k th moment of h_{17}; Obtained using $\frac{\partial^k}{\partial r^k} e^{-i\omega_1 r}$
Moments of h_{17}

- k th moment of h_{17}; Obtained using $\frac{\partial^k}{\partial r^k} e^{-i \omega_1 r}$

$$\langle \omega_1^k h_{17} \rangle = (-1)^k \frac{1}{2M_B} \left \langle \bar{B} \left | (\bar{h} S_{\bar{n}}) (0) \cdot [i \bar{n} \cdot \partial]^k \left (S_{\bar{n}}^\dagger g G^{\alpha \beta}_{\bar{s}} S_{\bar{n}} \right) (r \bar{n}) \left (S_{\bar{n}}^\dagger h \right) (0) \right | \bar{B} \right \rangle \bigg |_{r=0}$$
Moments of h_{17}

- kth moment of h_{17}; Obtained using $\frac{\partial^k}{\partial r^k} e^{-i\omega_1 r}$

$$\langle \omega_1^k h_{17} \rangle = (-1)^k \frac{1}{2M_B} \left\langle B \left| (\bar{h} S_\bar{n}) (0) \cdots ((\bar{n} \cdot \partial)^k (S_\bar{n}^\dagger g G_s^{\alpha\beta} S_\bar{n}) (r \bar{n}) (S_\bar{n}^\dagger h) (0) \right| B \right\rangle_{r=0}$$

- Using the (new) identity

$$i\bar{n} \cdot \partial \left(S_\bar{n}^\dagger (x) O(x) S_\bar{n}(x) \right) = S_\bar{n}^\dagger (x)[i\bar{n} \cdot D, O(x)] S_\bar{n}(x)$$
Moments of h_{17}

- k th moment of h_{17}; Obtained using $\frac{\partial^k}{\partial r^k} e^{-i\omega_1 r}$

$$\langle \omega_1^k h_{17} \rangle = (-1)^k \frac{1}{2M_B} \left. \left\langle \bar{B} \bigg| (\bar{h} S_{\bar{n}}) (0) \cdots \left[(i\bar{n} \cdot \partial) \right]^k \left(S_{\bar{n}}^\dagger g G_s^\alpha \beta S_{\bar{n}} \right) (r \bar{n}) \left(S_{\bar{n}}^\dagger h \right) (0) \bigg| \bar{B} \right\rangle \right|_{r=0}$$

- Using the (new) identity

$$i\bar{n} \cdot \partial \left(S_{\bar{n}}^\dagger (x) O(x) S_{\bar{n}}(x) \right) = S_{\bar{n}}^\dagger (x) [i\bar{n} \cdot D, O(x)] S_{\bar{n}}(x)$$
Moments of h_{17}

- k th moment of h_{17}; Obtained using $\frac{\partial^k}{\partial r^k} e^{-i\omega_1 r}$

$$\langle \omega_1^k h_{17} \rangle = (-1)^k \frac{1}{2M_B} \left\langle \overline{B} \left| (\overline{h} S_{\overline{n}})(0) \cdots [(i\overline{n} \cdot \partial)^k (S^\dagger_{\overline{n}} g G_s^{\alpha\beta} S_{\overline{n}})(r \overline{n}) \left(S^\dagger_{\overline{n}} h \right)(0) \right| \overline{B} \right\rangle \bigg|_{r=0}$$

- Using the (new) identity

$$i\overline{n} \cdot \partial \left(S^\dagger_{\overline{n}}(x) O(x) S_{\overline{n}}(x) \right) = S^\dagger_{\overline{n}}(x)[i\overline{n} \cdot D, O(x)] S_{\overline{n}}(x)$$

- Apply this for k derivatives $\Rightarrow k$ commutators of $i\overline{n} \cdot D$
- $[iD^\mu, iD^\nu] = igG^{\mu\nu}$
Moments of h_{17}

- k th moment of h_{17}; Obtained using $\frac{\partial^k}{\partial r^k} e^{-i\omega_1 r}$

$$\langle \omega_{1}^{k} h_{17} \rangle = (-1)^{k} \frac{1}{2M_B} \left[\bar{B} \right| (\bar{h} S_{\bar{n}})(0) \cdot \ldots \cdot \left[(i \bar{n} \cdot \partial)^k \left(S_{\bar{n}}^{\dagger} g_{s} G_{s}^{\alpha \beta} S_{\bar{n}} \right)(r \bar{n}) \right] \left(S_{\bar{n}}^{\dagger} h \right)(0) \left| B \right] \bigg|_{r=0}$$

- Using the (new) identity

$$i \bar{n} \cdot \partial \left(S_{\bar{n}}^{\dagger}(x) O(x) S_{\bar{n}}(x) \right) = S_{\bar{n}}^{\dagger}(x)[i \bar{n} \cdot D, O(x)] S_{\bar{n}}(x)$$

 - Apply this for k derivatives $\Rightarrow k$ commutators of $i \bar{n} \cdot D$
 - $[iD^\mu, iD^\nu] = igG^{\mu\nu}$

- **New result** Moments over ω_1

$$\langle \omega_{1}^{k} h_{17} \rangle = (-1)^{k} \frac{1}{2M_B} \left[\bar{B} \right| \bar{h} \cdot \ldots \cdot \left[i \bar{n} \cdot D, \ldots [i \bar{n} \cdot D, [D^\alpha, i \bar{n} \cdot D] \ldots] \right] s^\lambda h \left| B \right]$$

k times
Moments of the g_{17}

- Procedure to obtain these HQET matrix elements derived in [A. Gunawardana and G. Paz, JHEP 07(2017)137 [arXiv:1702.08904]]

$$\langle h_{17} \rangle = 2\lambda_2 = 2\mu_G^2/3$$

$$\langle \omega_1^2 h_{17} \rangle = \frac{2}{15} (5m_5 + 3m_6 - 2m_9) \text{ New result}$$

- m_i were extracted from data for the first time in 2016 [P. Gambino, K. J Healey, S. Turczyk PLB 763, 60 (2016)]

$$\mu_G^2 = 0.355 \pm 0.060 \text{ GeV}^2$$

$$m_5 = 0.072 \pm 0.045 \text{ GeV}^4$$

$$m_6 = 0.060 \pm 0.164 \text{ GeV}^4$$

$$m_9 = -0.280 \pm 0.352 \text{ GeV}^4$$
What we learn from moments

- Relative errors are large:

\[\langle \omega_0 \rangle \text{ Numerical error is 17\% for } \]
\[\langle \omega_1 h \rangle \text{ Numerical error is 80\% for } \]

- These moments still give useful information

- 2019 estimate
 \[\langle \omega_2 h \rangle \in (0.03, 0.27) \text{ GeV} \]
- 2010 models provide
 \[\langle \omega_2 h \rangle \in (-0.31, 0.49) \text{ GeV} \]

- These older models were constructed before \(m_i \) were extracted
- New estimate is significantly smaller than old estimate.

- Expect in future
 - Further improvements on HQET matrix elements
 - Belle II or LQCD data
 \[\Rightarrow \text{ Better constrains on moments} \]
What we learn from moments

- Relative errors are large:
 Numerical error is 17% for $\langle \omega_1^0 h_{17} \rangle$
 Numerical error is 80% for $\langle \omega_1^2 h_{17} \rangle$

These moments still give useful information

- 2019 estimate $\langle \omega_1^2 h_{17} \rangle \in (0.03, 0.27) \text{ GeV}$
- 2010 models provide $\langle \omega_1^2 h_{17} \rangle \in (-0.31, 0.49) \text{ GeV}$

These older models were constructed before m_i were extracted.

- New estimate is significantly smaller than old estimate.

- Expect in future:
 - Further improvements on HQET matrix elements
 - Belle II or LQCD data
 ⇒ Better constrains on moments
What we learn from moments

- Relative errors are large:
 - Numerical error is 17% for $\langle \omega_1^0 h_{17} \rangle$
 - Numerical error is 80% for $\langle \omega_1^2 h_{17} \rangle$

- These moments still give useful information
What we learn from moments

- Relative errors are large:
 Numerical error is 17% for $\langle \omega_1^0 h_{17} \rangle$
 Numerical error is 80% for $\langle \omega_1^2 h_{17} \rangle$

- These moments still give useful information
 - 2019 estimate $\langle \omega_1^2 h_{17} \rangle \in (0.03, 0.27) \text{ GeV}^4$
 - 2010 models provide $\langle \omega_1^2 h_{17} \rangle \in (-0.31, 0.49) \text{ GeV}^4$.
 - These older models were constructed before m_i were extracted
 - New estimate is significantly smaller than old estimate.
What we learn from moments

• Relative errors are large:
 Numerical error is 17% for $\langle \omega_1^0 h_{17} \rangle$
 Numerical error is 80% for $\langle \omega_1^2 h_{17} \rangle$

• These moments still give useful information
 - 2019 estimate $\langle \omega_1^2 h_{17} \rangle \in (0.03, 0.27)$ GeV4
 - 2010 models provide $\langle \omega_1^2 h_{17} \rangle \in (-0.31, 0.49)$ GeV4.
 - These older models were constructed before m_i were extracted
 - New estimate is significantly smaller than old estimate.

• Expect in future
 - Further improvements on HQET matrix elements
 - Belle II or LQCD data \Rightarrow Better constrains on moments
Applications
New model for h_{17}

- Properties of h_{17}
New model for \(h_{17} \)

- Properties of \(h_{17} \)
 - Real and even function over \(\omega_1 \)
 - \(\langle \omega_1^k h_{17}(\omega_1) \rangle = 0 \) for \(k = 1, 3, 5, \ldots \)
 - \(h_{17} \) has a dimension of mass
 - Range of \(\omega_1 \Rightarrow -\infty < \omega_1 < \infty \)

- We use Hermite polynomials \(H_n(x) \)

- Our model:
 \[
 h_{17}(\omega_1) = \sum_n a_{2n} H_{2n}(\omega_1 \sqrt{2\sigma}) e^{-\omega_1^2 / 2\sigma}
 \]
 - Where \(a_0 = \langle \omega_0^1 h_{17} \rangle \sqrt{2\pi |\sigma|}, a_{2n} = \langle \omega_{2n}^1 h_{17} \rangle - \sigma^2 \langle \omega_0^1 h_{17} \rangle / 4 \sqrt{2\pi |\sigma|}, a_{4n} = \cdots \)

- \(|h_{17}| < 1 \) GeV and no peaks beyond \(\omega_1 = 1 \) GeV
New model for h_{17}

- Properties of h_{17}
 - Real and even function over ω_1
 - $\langle \omega_1^k h_{17}(\omega_1) \rangle = 0$ for $k = 1, 3, 5, \cdots$
 - h_{17} has a dimension of mass
 - Range of $\omega_1 \Rightarrow -\infty < \omega_1 < \infty$

- We use Hermite polynomials $H_n(x)$
New model for h_{17}

- Properties of h_{17}
 - Real and even function over ω_1
 - $\langle \omega_1^k h_{17}(\omega_1) \rangle = 0$ for $k = 1, 3, 5, \cdots$
 - h_{17} has a dimension of mass
 - Range of $\omega_1 \Rightarrow -\infty < \omega_1 < \infty$

- We use Hermite polynomials $H_n(x)$

- Our model: $h_{17}(\omega_1) = \sum_n a_{2n} H_{2n}(\frac{\omega_1}{\sqrt{2}\sigma}) e^{-\frac{\omega_1^2}{2\sigma}}$

 - where

 $a_0 = \frac{\langle \omega_1^0 h_{17} \rangle}{\sqrt{2\pi}|\sigma|}$,
 $a_2 = \frac{\langle \omega_1^2 h_{17} \rangle - \sigma^2 \langle \omega_1^0 h_{17} \rangle}{4\sqrt{2\pi}|\sigma|^3}$,
 $a_4 = \cdots$
New model for h_{17}

- Properties of h_{17}
 - Real and even function over ω_1
 - $\langle \omega_1^k h_{17}(\omega_1) \rangle = 0$ for $k = 1, 3, 5, \cdots$
 - h_{17} has a dimension of mass
 - Range of $\omega_1 \Rightarrow -\infty < \omega_1 < \infty$

- We use Hermite polynomials $H_n(x)$

- Our model:
 $$h_{17}(\omega_1) = \sum_n a_{2n} H_{2n} \left(\frac{\omega_1}{\sqrt{2\sigma}} \right) e^{-\frac{\omega_1^2}{2\sigma}}$$
 - where
 $$a_0 = \frac{\langle \omega_1^0 h_{17} \rangle}{\sqrt{2\pi}|\sigma|}, \quad a_2 = \frac{\langle \omega_1^2 h_{17} \rangle - \sigma^2 \langle \omega_1^0 h_{17} \rangle}{4\sqrt{2\pi}|\sigma|^3}, \quad a_4 = \cdots$$

- $|h_{17}| < 1 \text{ GeV}$ and no peaks beyond $\omega_1 = 1 \text{ GeV}$
New model vs 2010 model

Figure: 2019 model vs 2010 model for h_{17}
New model vs 2010 model

Figure: 2019 model vs 2010 model for h_{17}

- Orange dashed line: 2010 model
 \[
 h_{17}(\omega_1, \mu) = \frac{2\lambda_2}{\sqrt{2\pi}\sigma} \frac{\omega_1^2 - \Lambda^2}{\sigma^2 - \Lambda^2} e^{-\frac{\omega_1^2}{2\sigma^2}}
 \]

- Blue line: 2019 model
 \[
 \sigma = 0.5 \text{ GeV}, \quad \Lambda = 0.425 \text{ GeV}
 \]

- New function is 50% smaller than the 2010 model

- New model gives better constraints on $Q_1 - Q_7$ contribution

- Consider also unknown higher moments, up to 6 Hermite polynomials
Figure: 2019 model vs 2010 model for h_{17}

- Orange dashed line: 2010 model $h_{17}(\omega_1, \mu) = \frac{2\lambda_2}{\sqrt{2\pi}\sigma} \frac{\omega_1^2 - \Lambda^2}{\sigma^2 - \Lambda^2} e^{-\frac{\omega_1^2}{2\sigma^2}}$
 - $\sigma = 0.5$ GeV, $\Lambda = 0.425$ GeV and $\Rightarrow \langle \omega_1^2 h_{17} \rangle = 0.49$ GeV4

- Blue line: 2019 model $\sigma = 0.5$ GeV and $\langle \omega_1^2 h_{17} \rangle = 0.27$ GeV4
New model vs 2010 model

Figure: 2019 model vs 2010 model for h_{17}

- Orange dashed line: 2010 model $h_{17}(\omega_1, \mu) = \frac{2\lambda_2}{\sqrt{2\pi}\sigma} \frac{\omega_1^2 - \Lambda^2}{\sigma^2 - \Lambda^2} e^{-\frac{\omega_1^2}{2\sigma^2}}$

 - $\sigma = 0.5$ GeV, $\Lambda = 0.425$ GeV and $\langle \omega_1^2 h_{17} \rangle = 0.49$ GeV4

- Blue line; 2019 model: $\sigma = 0.5$ GeV and $\langle \omega_1^2 h_{17} \rangle = 0.27$ GeV4
New model vs 2010 model

Figure: 2019 model vs 2010 model for h_{17}

- Orange dashed line: 2010 model $h_{17} (\omega_1, \mu) = \frac{2\lambda_2}{\sqrt{2\pi}\sigma} \frac{\omega_1^2 - \Lambda^2}{\sigma^2 - \Lambda^2} e^{-\frac{\omega_1^2}{2\sigma^2}}$
 - $\sigma = 0.5$ GeV, $\Lambda = 0.425$ GeV and $\langle \omega_1^2 h_{17} \rangle = 0.49$ GeV^4

- Blue line: 2019 model: $\sigma = 0.5$ GeV and $\langle \omega_1^2 h_{17} \rangle = 0.27$ GeV^4

- New function is 50% smaller than the 2010
New model vs 2010 model

Figure: 2019 model vs 2010 model for h_{17}

- Orange dashed line: 2010 model $h_{17}(\omega_1, \mu) = \frac{2\lambda_2}{\sqrt{2\pi}\sigma} \frac{\omega_1^2 - \Lambda^2}{\sigma^2 - \Lambda^2} e^{-\frac{\omega_1^2}{2\sigma^2}}$
 - $\sigma = 0.5$ GeV, $\Lambda = 0.425$ GeV and $\langle \omega_1^2 h_{17} \rangle = 0.49$ GeV4

- Blue line; 2019 model: $\sigma = 0.5$ GeV and $\langle \omega_1^2 h_{17} \rangle = 0.27$ GeV4

- New function is 50% smaller than the 2010
 - New model give better constraints on $Q_1^c - Q_7^\gamma$ contribution
New model vs 2010 model

Figure: 2019 model vs 2010 model for h_{17}

- Orange dashed line: 2010 model $h_{17}(\omega_1, \mu) = \frac{2\lambda_2}{\sqrt{2}\pi\sigma} \frac{\omega_1^2 - \Lambda^2}{\sigma^2 - \Lambda^2} e^{-\frac{\omega_1^2}{2\sigma^2}}$
 - $\sigma = 0.5$ GeV, $\Lambda = 0.425$ GeV and $\langle \omega_1^2 h_{17} \rangle = 0.49$ GeV4

- Blue line; 2019 model: $\sigma = 0.5$ GeV and $\langle \omega_1^2 h_{17} \rangle = 0.27$ GeV4

- New function is 50% smaller than the 2010
 - New model give better constraints on $Q_1^c - Q_{7\gamma}$ contribution

- Consider also unknown higher moments, up to 6 Hermite polynomials
CP Violation

- Direct CP Asymmetry experimental bound:
 \[A_{CP} = (1.5 \pm 2.0) \% \]

 [Y. Amhis et. al. EPJC 77, 895 (2017)]
CP Violation

- Direct CP Asymmetry experimental bound:
 \[A_{CP} = (1.5 \pm 2.0) \% \]

 [Y. Amhis et. al. EPJC 77, 895 (2017)]

- Previously known values:
 \(-330\text{ MeV} < \tilde{\Lambda}_{u17} < +525\text{ MeV}\)
 \(-9\text{ MeV} < \tilde{\Lambda}_{c17} < +11\text{ MeV}\)

\[A_{Xs\gamma}^{SM} = \left(1.15 \times \frac{\tilde{\Lambda}_{u17} - \tilde{\Lambda}_{c17}}{300\text{MeV}} + 0.71 \right) \% \text{ CP asymmetry} \]

\[\tilde{\Lambda}_{u17} = \frac{2}{3} h_{17}(0) \]

\[\tilde{\Lambda}_{c17} = \frac{2}{3} \int_{4m_{c}^2/m_b}^{\infty} d\omega_1 \frac{d\omega_1}{\omega_1} f \left(\frac{m_c^2}{m_b\omega_1} \right) h_{17}(\omega_1) \]

Perturbative

Non-perturbative
CP Violation

- Direct CP Asymmetry experimental bound:
 \[A_{CP} = (1.5 \pm 2.0)\% \]

 [Y. Amhis et. al. EPJC 77, 895 (2017)]

- \[A_{SM}^{Xs\gamma} = \left(1.15 \times \frac{\tilde{\Lambda}_{17}^u - \tilde{\Lambda}_{17}^c}{300\text{MeV}} + 0.71 \right) \% \text{ CP asymmetry} \]

 \[\tilde{\Lambda}_{17}^u = \frac{2}{3} h_{17}(0) \]

 \[\tilde{\Lambda}_{17}^c = \frac{2}{3} \int_4^{\infty} \frac{d\omega_1}{m_c^2/m_b} f \left(\frac{m_c^2}{m_b \omega_1} \right) h_{17}(\omega_1) \]

 Perturbative

 Non-perturbative

- Previously known values:

 - \(-330\text{MeV} < \tilde{\Lambda}_{17}^u < +525\text{MeV} \)

 - \(-9\text{MeV} < \tilde{\Lambda}_{17}^c < +11\text{MeV} \)

- We plan to improve these estimates
CP Violation

- Direct CP Asymmetry experimental bound:
 \[A_{CP} = (1.5 \pm 2.0) \% \]
 [Y. Amhis et. al. EPJC 77, 895 (2017)]

- \[A_{SM}^{Xs\gamma} = \left(1.15 \times \dfrac{\tilde{\Lambda}_{17}^u - \tilde{\Lambda}_{17}^c}{300\text{MeV}} + 0.71 \right) \% \text{ CP asymmetry} \]

 \[
 \tilde{\Lambda}_{17}^u = \dfrac{2}{3} h_{17}(0) \\
 \tilde{\Lambda}_{17}^c = \dfrac{2}{3} \int_{4m_c^2/m_b}^{\infty} \dfrac{d\omega_1}{\omega_1} f \left(\dfrac{m_c^2}{m_b \omega_1} \right) h_{17}(\omega_1) \\
 \]
 \[\text{Perturbative} \quad \text{Non-perturbative} \]

- Previously known values:
 \[-330\text{MeV} < \tilde{\Lambda}_{17}^u < +525\text{MeV} \]
 \[-9\text{MeV} < \tilde{\Lambda}_{17}^c < +11\text{MeV} \]
CP Violation

• Direct CP Asymmetry experimental bound:
 \[A_{CP} = (1.5 \pm 2.0)\% \]

 [Y. Amhis et. al. EPJC 77, 895 (2017)]

•
 \[\mathcal{A}^{SM}_{X_s \gamma} = \left(1.15 \times \frac{\tilde{\Lambda}^u_{17} - \tilde{\Lambda}^c_{17}}{300\text{MeV}} + 0.71 \right) \% \text{ CP asymmetry} \]

 \[\tilde{\Lambda}^u_{17} = \frac{2}{3} h_{17}(0) \]

 \[\tilde{\Lambda}^c_{17} = \frac{2}{3} \int_{4m^2_c/m_b}^{\infty} \frac{d\omega_1}{\omega_1} f \left(\frac{m^2_c}{m_b \omega_1} \right) \begin{array}{c} \text{Perturbative} \\ \text{Non-perturbative} \end{array} h_{17}(\omega_1) \]

• Previously known values:

 \[-330\text{MeV} < \tilde{\Lambda}^u_{17} < +525\text{MeV} \]

 \[-9\text{MeV} < \tilde{\Lambda}^c_{17} < +11\text{MeV} \]

• We plan to improve these estimates
Conclusion

- $\bar{B} \to X_s \gamma$ is a important New Physics probe
- Non perturbative error of the decay rate is 5%
- $Q_1^c - Q_7^\gamma$ is the largest contribution to the error
- Better estimates for $Q_1^c - Q_7^\gamma$ obtained from moments of h_{17}
- New estimates for CP asymmetry
- Reduce non-perturbative error on rate and CP asymmetry