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The 3 Neutrino Model:
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Surprisingly well constrained!
Main experimental focus now: mass hierarchy and CP violation

But not everything fits this picture...



Anomalies (>20 signals) consistent w/ Am?~1 eV? oscillations 2 “3+1”
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Short-baseline v, 2V,
Vacuum oscillations: v, > v,
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Experiments we use in our fits (null and with signals)...
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L(m)

Py, svs = sin® 20 sin?  1.27 Am?j (eVQ)

E(MeV)
Am?=1eVZ > L/E~1m/MeV or km/GeV (“Short Baseline”)
10*
102_

Very high background.

Had an excess but not at 20

CT
Q Not high stats yet. You will hear more

on Prospect at this meeting!
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Global fit results:
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Yes introducing 3+1 is a huge improvement, but there are
some other important questions to ask!

[ have time in this talk to explore two...

Are the data sets internally consistent!
Are there better models than 3+1?
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Remember in 3+1 the parameters are:

Ues

P, . = 1—4(1-L|Uu|?)|Uecq|?sin®(1. @ /E) ,
/E)

Py, = 1—4(1 \W in’(1.27Am3,
= AU .27 /E).

'h

Traditionally we compare disappearance: Ve 2V,
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This is the well-known “tension” within the 3+1 model
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Is there a better model?

Often people look to adding additional sterile neutrinos.

3+2 adds 7 dof to the fits!
But while it helps a little with the tension, but not a lot.

What about: 3+1+decay?

This idea was already explored for IceCube.

https://arxiv.org/abs/1711.05921
Phys.Rev. D97 (2018) no.5, 055017

Let’s explore it for the short baseline experiments
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Without a symmetry to protect it,
neutrinos mass states will decay, even in the Standard Model
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Decay in the case of a “sterile” flavor

It’s the mass state

= that decays!
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Ami,/eV?

Scanning across my state lifetimes...

10?

10° 2.00>logyp(7)>1.20
10° -
10-
10 . . .
10-4 10-* 107 107!
5in?20,,

(a) Allowed points for
1.2 < log,g(a/eV™1) < 2.0.

10°

10?

-
=]

1.20>logyp(7)>0.40

Amji,/eV?

. e
107
102 T T T
104 10 107 10!
5in?20,,

(b) Allowed points for
0.4 < logo(ma/eV™') < 1.2.

The allowed regions expand!
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(c) Allowed points for
—0.4 < logy(Ta/eV™!) < 0.4.
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am3, leV?

Scanning across my state lifetimes...
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(b) Allowed points for
0.4 < log,g(ma/eV™') < 1.2.

100

10° 0.40>logyp(7)>-0.40

Ami,jeV2

104 IO'" l(;"' )C;"
5in?20,0

(c) Allowed points for
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[f you fit for disappearance and appearance separately,

the level of agreement improves!

[t still does not overlap at 20 but it is much improved!
Fitting for the visible decay is likely to lead to agreement.

100
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The “Parameter Goodness of Fit Test” (PG Test)

- A comparison of the chi2 of the best fit points.

[f data are drawn from the same model,
then the best fit points should agree.

2 2
XPG Xglob (Xapp T Xdis)a

i'\'TPG ( app T \dls) — i'?\'rglobe

From this you can get a p-value for agreement.
Tiny probability = unlikely that the sets agree.

M. Maltoni, T. Schwetz Phys.Rev. D68 (2003) 033020
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Appearance vs. Disappearance PG Test Results:

3+1 PG disagreement =2 4.50
3+2 PG disagreement =2 4.40

3+1+invisible decay PG disagreement =2 3.20

Introducing visible decay is likely to improve tension further,
because visible decay “replenishes” the flux, weakening disappearance
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No time in this talk, but our review paper also provides...

A text-book style introduction to oscillations and 3+1
Bayesian fit results

An extended discussion of the assumptions hidden in global fits.
- They are not as exact as you might think
(or we would like!)
Discussion of past experiments, near future and our view of
the best design for the far future (decay-atrest based)

An example of a farther future experiment: IsoDAR
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(3+1) Model with Am? = 1.0 eV? and sin?20=0.1

(3+2) with Kopp/Maltoni/Schwetz Parameters (3+1) Model with Am? = 0.9 eV? and sin?20=0.1035
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» We will hear more about IsoDAR tomorrow (14:20, E. Dunton) 20



Conclusions:

We have published a review that provides the
latest global fits to short baseline data sets.

The overall “take-away” for 3+1 is the same as in the past...
The data strongly favor 3+1 over only-3
Yet there is tension between appearance and disappearance

New: 3+1+decay is a significant improvement.
That model needs to be extended to “visible decay”

More and better data sets are needed,
the anomalies remain confusing and are not going away!
[ am looking forward to the talks that follow...
Thank you!
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Back Ups
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Our latest result compared to our 2016 results...
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Experiments we use in our fits ... things to notice
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The systematic uncertainties for the experiments are different.

25



Experiments we use in our fits ... things to notice

* have > 20 |

Vy —> Ve Vy = Vyu . 1
MiniBooNE (BNB) *[SciBooNE/MiniBooNEJ[KARMEN /LSND Cross Section
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MINOS
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Antineutrino || KARMEN CCFR NEOS
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[ceCube’s 2015 result is not included in these fits. Why?

This is computing-intensive to include because it involves matter effects.
Our plan is to include IceCube when they update that result in autumn.
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Experiments we use in our fits ... things to notice
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W/t/t to Reactors, we are not using...

1) Neutrino-4 results because we have outstanding questions to them
2) STEREO results because they were too recent

3) Absolute reactor rates compared to prediction (we only use ratios) |




Absolute Reactor Rates: What’s that bump?
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Along with Daya Bay,
the 5 MeV “bump” appears in RENO, Double Chooz and NEOS!

11} Both Daya Bay and RENO have done
time-dependence studies that strongly
favor the bump coming from 235U
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The next 4 slides examine this bump more closely



In short baseline experiments the bump seems to be suppressed?

PROSPECT and STEREO are running at HFIRs (235U cores!)
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Let’s look more closely...

-- no oscillation
-- best fit oscillation
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(a) No 5 MeV excess flux model.

The no-oscillation
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flux (so flat)
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(c) A 5 MeV excess for 2**U only.

Here the no oscillation adds a 5 MeV bump
represented by Huber’s Gaussian fit to

the Daya Bay bump

(so the red line now has a bump)



-- no oscillation
-- best fit oscillation
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(a) No 5 MeV excess flux model.
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(b) An equal 5 MeV excess for all fuel

(c) A 5 MeV excess for **U only.
components.

Prospect data comes from an HFIR
(so a pure U core).

Left: red bump prediction is based on
assuming Daya Bay bump comes from

both U and Pu
Right: Assumes Daya Bay bump is U only



Let’s do a 3+1 fit to the Prospect data in the 3 scenarios!
See the purple lines!

-- no oscillation

- best fit oscillation | 5 MeV Excess Model is from fit to Daya Bay bump
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(a) No 5 MeV excess flux model. (b) An equal 5 MeV excess for all fuel (c) A 5 MeV excess for >**U only.
components.
Ay?/dot=12/2 Ay?/dof=9/2 Ax?/dof=23/2

Best fit for b and c are both at

Oscillation model is about Am?=0.95 eV?, 5in220=0.14

yielding a substantial
improvement!

In the future we will include
fits for these 3 scenarios.




Evading the flavor dependent bounds on decay (arXiv:1711.05921)

Bound from meson decays: E |gea|2 < 3 % 10—5
/J o
m/K N \ I — .o U . *
N ga,B g'LJ ey} JB
©,J

*
gap = 91;UaaU;g
Assume only one gy; is non-zero:

From SBL fits: Uag ~ 0(0'1)
From standard measurements: Ujﬁ ~ 0(0.1)

= 045 < 0(01)
L;j = g;;mi/32m
Tij > 104/mz

But if more than one g,; is non-zero, cancellations may occur, decreasing
the constraint on decay rate.



