Global Fits to Models of

Janet Conrad, DPF, July 30, 2019

Where Are We With Light Sterile Neutrinos?

A. Diaz¹, C.A. Argüelles¹, G.H. Collin¹, J.M. Conrad¹, M.H. Shaevitz²

¹ Massachusetts Institute of Technology, Cambridge, MA 02139, USA and

² Columbia University, New York, NY 10027, USA

https://arxiv.org/abs/1906.00045
Submitted to Reviews of Modern Physics.

The 3 Neutrino Model:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{\text{PMNS}} \\ 3 \times 3 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

oscillations: $[\theta_{12}, \theta_{23}, \theta_{13}, \delta^{\mathrm{CP}}]$

Surprisingly well constrained!

Main experimental focus now: mass hierarchy and CP violation

But not everything fits this picture...

Anomalies (>2 σ signals) consistent w/ Δ m²~1 eV² oscillations \rightarrow "3+1"

$$\begin{array}{c}
\nu_{\mu} \rightarrow \nu_{e} \\
\nu_{e} \rightarrow \nu_{e} \\
\nu_{\mu} \rightarrow \nu_{\mu}
\end{array}$$

$$\begin{array}{c}
U_{e4}, U_{\mu 4}, \Delta m^{2} \\
U_{\mu 4}, \Delta m^{2}
\end{array}$$

$$P_{\nu_e \to \nu_e} = 1 - 4(1 - |U_{e4}|^2)|U_{e4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E) ,$$

$$P_{\nu_\mu \to \nu_\mu} = 1 - 4(1 - |U_{\mu 4}|^2)|U_{\mu 4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E) ,$$

$$P_{\nu_\mu \to \nu_e} = 4|U_{e4}|^2|U_{\mu 4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E) .$$

$$\sin^2 2\theta_{ee} = 4(1 - |U_{e4}|^2)|U_{e4}|^2,$$

$$\sin^2 2\theta_{\mu\mu} = 4(1 - |U_{\mu4}|^2)|U_{\mu4}|^2,$$

$$\sin^2 2\theta_{\mu e} = 4|U_{\mu4}|^2|U_{e4}|^2,$$

Experiments we use in our fits (null and with signals)...

*	have $> 2\sigma$	$ u_{\mu} ightarrow u_{e}$	$ u_{\mu} ightarrow u_{\mu}$	$ u_e ightarrow u_e$
	Neutrino	MiniBooNE (BNB) *	SciBooNE/MiniBooNE	KARMEN/LSND Cross Section
		MiniBooNE(NuMI)	CCFR	Gallium *
		NOMAD	CDHS	
			MINOS	
	Antineutrino	LSND *	SciBooNE/MiniBooNE	Bugey
		KARMEN	CCFR	NEOS
		MiniBooNE (BNB) *	MINOS	DANSS *
				PROSPECT

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\theta \sin^2 \left(1.27 \ \Delta m_{ij}^2 \left(\text{eV}^2 \right) \frac{L(\text{m})}{E(\text{MeV})} \right)$$

 $\Delta m^2 \sim 1 \text{ eV}^2 \rightarrow \text{L/E} \sim 1 \text{ m/MeV} \text{ or km/GeV}$ ("Short Baseline")

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^2 2\theta \sin^2 \left(1.27 \ \Delta m_{ij}^2 \left(\text{eV}^2 \right) \frac{L(\text{m})}{E(\text{MeV})} \right)$$

 $\Delta m^2 = 1 \text{ eV}^2 \rightarrow \text{L/E} \sim 1 \text{ m/MeV} \text{ or km/GeV}$ ("Short Baseline")

Global fit results:

Yes introducing 3+1 is a huge improvement, but there are some other important questions to ask!

I have time in this talk to explore two...

Are the data sets internally consistent? Are there better models than 3+1?

Remember in 3+1 the parameters are:

$$U_{e4}$$
, $U_{\mu4}$, Δm^2

$$\begin{array}{lcl} P_{\nu_{e}\to\nu_{e}} &=& 1-4(1-|U_{e4}|^{2})|U_{e4}|^{2}\sin^{2}(1.27\Delta m_{41}^{2}L/E)\;,\\ P_{\nu_{\mu}\to\nu_{\mu}} &=& 1-4(1-|U_{\mu4}|^{2})|U_{\mu4}|^{2}\sin^{2}(1.27\Delta m_{41}^{2}L/E)\;,\\ P_{\nu_{\mu}\to\nu_{e}} &=& 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}(1.27\Delta m_{41}^{2}L/E). \end{array}$$

Traditionally we compare disappearance:
$$v_e \rightarrow v_e$$

$$\begin{array}{ccc} \nu_{e} \rightarrow \nu_{e} & \checkmark \\ \nu_{\mu} \rightarrow \nu_{\mu} & \checkmark \end{array}$$

to appearance:
$$\nu_{\mu} \rightarrow \nu_{e}$$

No overlap in preferred regions!

This is the well-known "tension" within the 3+1 model

Is there a better model?

Often people look to adding additional sterile neutrinos. 3+2 adds 7 dof to the fits!

But while it helps a little with the tension, but not a lot.

What about: 3+1+decay?

This idea was already explored for IceCube. https://arxiv.org/abs/1711.05921

Phys.Rev. D97 (2018) no.5, 055017

Let's explore it for the short baseline experiments

Without a symmetry to protect it, neutrinos mass states will decay, even in the Standard Model

Decay in the case of a "sterile" flavor

It is a more economical model than 3+2 in model parameters

→ only 1 dof added

Scanning across m₄ state lifetimes...

The allowed regions expand!

Scanning across m₄ state lifetimes...

If you fit for disappearance and appearance separately, the level of agreement improves!

It still does not overlap at 2 σ but it is much improved! Fitting for the visible decay is likely to lead to agreement.

The "Parameter Goodness of Fit Test" (PG Test)

→ A comparison of the chi2 of the best fit points. If data are drawn from the same model, then the best fit points should agree.

$$\chi_{\text{PG}}^2 = \chi_{\text{glob}}^2 - (\chi_{\text{app}}^2 + \chi_{\text{dis}}^2),$$

$$N_{PG} = (N_{app} + N_{dis}) - N_{glob},$$

From this you can get a p-value for agreement.

Tiny probability

unlikely that the sets agree.

M. Maltoni, T. Schwetz Phys. Rev. D68 (2003) 033020

Appearance vs. Disappearance PG Test Results:

3+1 PG disagreement \rightarrow 4.5 σ

3+2 PG disagreement \rightarrow 4.4 σ

3+1+invisible decay PG disagreement \rightarrow 3.2 σ

Introducing visible decay is likely to improve tension further, because visible decay "replenishes" the flux, weakening disappearance

No time in this talk, but our review paper also provides...

- A text-book style introduction to oscillations and 3+1
- Bayesian fit results
- An extended discussion of the assumptions hidden in global fits.
 - → They are not as exact as you might think (or we would like!)
- Discussion of past experiments, near future and our view of the best design for the far future (decay-at-rest based)

An example of a farther future experiment: IsoDAR

Conclusions:

We have published a review that provides the latest global fits to short baseline data sets.

The overall "take-away" for 3+1 is the same as in the past...

The data strongly favor 3+1 over only-3

Yet there is tension between appearance and disappearance

New: 3+1+decay is a significant improvement.

That model needs to be extended to "visible decay"

More and better data sets are needed,
the anomalies remain confusing and are not going away!
I am looking forward to the talks that follow...
Thank you!

Back Ups

```
\sin^{2} 2\theta_{ee} = \sin^{2} 2\theta_{14} = 4\cos^{2} \theta_{14} \sin^{2} \theta_{24} (1 - \cos^{2} \theta_{14} \sin^{2} \theta_{24}) = 4(1 - |U_{e4}|^{2})|U_{e4}|^{2} 

\sin^{2} 2\theta_{\mu\mu} = 4\cos^{2} \theta_{14} \sin^{2} \theta_{24} (1 - \cos^{2} \theta_{14} \sin^{2} \theta_{24}) = 4(1 - |U_{\mu 4}|^{2})|U_{\mu 4}|^{2} 

\sin^{2} 2\theta_{\tau\tau} = 4\cos^{2} \theta_{14} \cos^{2} \theta_{24} \sin^{2} \theta_{34} (1 - \cos^{2} \theta_{14} \cos^{2} \theta_{24} \sin^{2} \theta_{34}) = 4(1 - |U_{\tau 4}|^{2})|U_{\tau 4}|^{2} 

\sin^{2} 2\theta_{\mu e} = \sin^{2} 2\theta_{14} \sin^{2} \theta_{24} = 4|U_{\mu 4}|^{2}|U_{e4}|^{2} 

\sin^{2} 2\theta_{e\tau} = \sin^{2} 2\theta_{14} \cos^{2} \theta_{24} \sin^{2} \theta_{34} = 4|U_{\mu 4}|^{2}|U_{\tau 4}|^{2} 

\sin^{2} 2\theta_{\mu\tau} = \sin^{2} 2\theta_{24} \cos^{4} \theta_{14} \sin^{2} \theta_{34} = 4|U_{\mu 4}|^{2}|U_{\tau 4}|^{2}
```

Our latest result compared to our 2016 results...

Experiments we use in our fits ... things to notice

* have $> 2\sigma$	$ u_{\mu} ightarrow u_{e}$	$ u_{\mu} ightarrow u_{\mu}$	"	Unplanned"	
Neutrino	MiniBooNE (BNB) * MiniBooNE(NuMI) NOMAD	SciBooNE/MiniBooNE CCFR CDHS MINOS	KARMI	EN/LSND Cross Sec Gallium *	ction
Antineutrino	LSND * KARMEN MiniBooNE (BNB) *	SciBooNE/MiniBooNE CCFR MINOS		Bugey NEOS DANSS * PROSPECT	
"Tra	6	Reactor Experiments			

The systematic uncertainties for the experiments are different.

Experiments we use in our fits ... things to notice

*	have $> 2\sigma$	$ u_{\mu} ightarrow u_{e}$	$ u_{\mu} ightarrow u_{\mu}$	$ u_e \rightarrow \nu_e $
:	Neutrino	MiniBooNE(NuMI)	CCFR	KARMEN/LSND Cross Section Gallium *
		NOMAD	CDHS MINOS	
	Antineutrino	LSND * KARMEN	SciBooNE/MiniBooNE CCFR	NEOS
		MiniBooNE (BNB) *	MINOS	DANSS * PROSPECT

IceCube's 2015 result is not included in these fits. Why?

This is computing-intensive to include because it involves matter effects. Our plan is to include IceCube when they update that result in autumn.

Experiments we use in our fits ... things to notice

W/r/t to Reactors, we are not using...

- 1) Neutrino-4 results because we have outstanding questions to them
- STEREO results because they were too recent
- Absolute reactor rates compared to prediction (we only use ratios) $\frac{1}{2}$

Absolute Reactor Rates: What's that bump?

Along with Daya Bay, the 5 MeV "bump" appears in RENO, Double Chooz and NEOS!

The next 4 slides examine this bump more closely

In short baseline experiments the bump seems to be suppressed? PROSPECT and STEREO are running at HFIRs (235U cores!)

A short baseline osc. could cancel the bump.

For long baseline, the osc has averaged to $\frac{1}{2}$.

Let's look more closely...

-- no oscillation

-- best fit oscillation

(a) No 5 MeV excess flux model.

The no-oscillation (Red line) is just the Huber flux (so flat)

5 MeV Excess Model is from fit to Daya Bay bump

(b) An equal 5 MeV excess for all fuel components.

(c) A 5 MeV excess for $^{235}\mathrm{U}$ only.

Here the no oscillation adds a 5 MeV bump represented by Huber's Gaussian fit to the Daya Bay bump (so the red line now has a bump)

-- no oscillation

-- best fit oscillation

(a) No 5 MeV excess flux model.

5 MeV Excess Model is from fit to Daya Bay bump

- (b) An equal 5 MeV excess for all fuel components.
- (c) A 5 MeV excess for $^{235}\mathrm{U}$ only.

Prospect data comes from an HFIR (so a pure U core).

Left: red bump prediction is based on assuming Daya Bay bump comes from both U and Pu

Right: Assumes Daya Bay bump is U only

Let's do a 3+1 fit to the Prospect data in the 3 scenarios!

See the purple lines!

- -- no oscillation
- -- best fit oscillation

(a) No 5 MeV excess flux model.

$$\Delta \chi^2 / \text{dof} = 12/2$$

Oscillation model is yielding a substantial improvement!

5 MeV Excess Model is from fit to Daya Bay bump

- (b) An equal 5 MeV excess for all fuel components.
- (c) A 5 MeV excess for ²³⁵U only.

$$\Delta \chi^2 / dof = 9/2$$

$$\Delta \chi^2 / dof = 23/2$$

Best fit for b and c are both at about $\Delta m^2 = 0.95 \text{ eV}^2$, $\sin^2 2\theta = 0.14$

In the future we will include fits for these 3 scenarios.

Evading the flavor dependent bounds on decay (arXiv:1711.05921)

Bound from meson decays:

Assume only one g_{4j} is non-zero:

From SBL fits:

From standard measurements:

$$\sum_{\alpha} |g_{e\alpha}|^2 < 3 \times 10^{-5}$$

$$g_{\alpha\beta} = \sum_{i,j} g_{ij} U_{\alpha i} U_{j\beta}^*$$

$$g_{\alpha\beta} = g_{4j} U_{\alpha 4} U_{j\beta}^*$$

$$U_{\alpha 4} \sim \mathcal{O}(0.1)$$

$$U_{j\beta} \sim \mathcal{O}(0.1)$$

$$\Rightarrow g_{4j} < \mathcal{O}(0.1)$$

$$\Gamma_{ij} = g_{ij}^2 m_i / 32\pi$$

$$\tau_{ij} > 10^4 / m_i$$

But if more than one g_{4j} is non-zero, cancellations may occur, decreasing the constraint on decay rate.