





### MicroBooNE Recent Cross Section Results

Michael Kirby, Fermilab/Scientific Computing Division July 29,2019

APS Division of Particles & Fields 2019 - Northeastern University



## How does MicroBooNE fit into the neutrino picture?

Short Baseline Accelerator Neutrino Program

- resolve anomalies from LSND/MiniBooNE
- MicroBooNE first experiment in the program
- utilize Booster Neutrino Beam
- LArTPC improved coverage, energy threshold, and particle identification

Measurements of v-Ar cross sections

- comparison with numerous predictions
- allows MicroBooNE to tune interaction, nuclear, and final state models to match data
- improve determination of incident v energy for neutrino oscillation measurements

Liquid Argon TPC detector research and development for future experiments

Non-Accelerator based physics R&D (SN, p decay)



Photo by my mom





#### MicroBooNE and the NuMI Beam



#### MicroBooNE and the NuMI Beam



#### **Neutrino - Nucleon interaction**

$$P_{lpha 
ightarrow eta, lpha 
eq eta} = \sin^2(2 heta) \sin^2\left(rac{\Delta m^2 L}{4E}
ight)$$

- Determination of the incident neutrino is based upon interpretation of reconstructed final-state objects through interaction model
- Nuclear model
- Nucleon correlations
- Final-state interactions
- All of this before the particles exit the nucleus and interact in the detector





#### **Neutrino-nucleon interactions**



Lots of interesting (nuclear) physics over all energy ranges.



#### **Neutrino-nucleon interactions**





### **MicroBooNE Detector**



- 85 t active volume
- 2 induction planes (±60°)
- 1 collection plane (vert)
- 2.3 ms drift time
  - 70 kV 2.5m drift
- 32 PMTs for trigger and t0

JINST 12, P02017 (2017)

### Liquid Argon TPC

### Strengths

- full  $4\pi$  coverage
- mm scale resolution
- Fully active calorimetry
- lower energy threshold than any other accelerator v-detectors

### Challenges

- argon purity electron lifetime
- uniformity of E-field
- neutron identification
- target atom contains 40 nucleons



#### MicroBooNE event reconstruction



Surface detector - reject dominant cosmic tracks Reconstruct interaction vertex Particle identification -  $\mu$ , e, p,  $\pi^{\circ}$ ,  $\gamma$ 



(a) Collection plane (Y)



(c) Induction plane (U)



Chan #



### Inclusive $\nu_{\mu}$ cross section measurement

- Identify muon track from neutrino vertex
- high efficiency recontruction
- purity test rejection of cosmic tracks
- Full  $4\pi$  coverage of interaction vertex
- Largely independent of hadron activity/ FSI, but sensitive to nuclear & interaction model
- important first step towards tuning models
- can be used as constraint for  $\nu_e$  beam composition









## Cosmic background rejection

- "cosmic only" can be measured directly from off-beam triggers
- "neutrino + cosmic" track from cosmic interaction is associated with flash from neutrino interaction outside of active volume
- Totally rejection factor of 99.99% achieved





Measured Cosmic Rate (Beam-Off) BNB Trigger Data (Beam-On) [4.51E18 POT]

MicroBooNE Preliminary

1.6 μs beam

spill time

#### **Muon Candidate Track Identification**





- Multiple Coulomb
   Scattering to eliminate
   broken tracks
- truncated dQ/dx of the track consistent with MIP
- Eff = 55%, purity 53%





#### **Muon Candidate Distributions**



- GENIE prediction from v2.12.2 with empirical MEC
- Some tension in the forward region
- high efficiency and acceptance allows for this to be base sample of other selections



### $\nu_{\mu}$ -Ar Inclusive Cross-Section Measurement

- First double differential cross section  $p_{\mu}$  vs  $\cos(\theta_{\mu})$
- Single differential cross sections  $p_{\mu}$  and  $cos(\theta_{\mu})$
- tested with different neutrino event generators
- greatest tension exists at forward muon production
- forwarded folded analysis and publication of migration matrices allows for independent comparison with new models

#### Submitted to PRL, arXiv:1905.09694





MicroBooNE 1.6e20 POT

Measured





### Moving to more complicated topology -> CC π<sup>0</sup> Cross Section

- dominate production is from decay of  $\Delta$  to  $\pi$ 0
- important for neutrino-argon interactions, FSI, and detector performance
- Reconstruct a
   electromagnetic shower
   associated with vµ vertex
- select photon showers and separate from electrons
- shower and vertex reconstruction resolution







### CC π<sup>0</sup> candidate selection

- Fit the shower conversion length to confirm γ selection
- Measured conversion length agrees with simulation
- Single shower higher efficiency
- Two shower higher purity
  - energy correction from simulation
  - hit thresholds correction
  - clustering efficiency
  - consistent with π<sup>0</sup> mass









### Final CC π<sup>0</sup> Cross Section



$$\left\langle \sigma^{\nu_{\mu} \mathbf{C} \mathbf{C} \pi^{0}} \right\rangle_{\Phi} = (1.94 \pm 0.16 \text{ [stat.]} \pm 0.60 \text{ [syst.]}) \times 10^{-38} \frac{\text{cm}^{2}}{\text{Ar}}$$

Phys. Rev. D99, 091102(R) (2019)



### What about electrons?







### Reconstruction of $v_e$ interactions from the NuMI Beam

- Golden channel for v oscillation measurements
- first measurement of  $v_e$ -Ar
- $5\% v_e$  beam composition
- NuMI spectrum (640 MeV)















**NuMI Target Direction** 





- can isolate single-e peak from the e+-e- pairs from photons
- events aligned with collection plane will be recovered with use of the induction planes

**MICROBOONE-NOTE-1054-PUB** 



#### **Neutrino - Nucleon interaction**

 determination of the incident neutrino is based upon interpretation through nuclear model of reconstructed finalstate objects







## **Proton Identification Algorithm (PID)**

$$PID = \chi^2_{\mathrm proton}/ndof = \sum_{hit} (\frac{(dE/dx_{measured} - dE/dx_{theory})}{\sigma_{dE/dx}})^2/ndof$$

Select tracks ≥ 5 hits correct dE/dx for electron recombination use only the collection plane currently Calculate  $\chi^2$ (dE/dx) with proton expectation

| Experiment | Threshold  |
|------------|------------|
| T2K        | 0.5 GeV/c  |
| MINERvA    | 0.45 GeV/c |
| MicroBooNE | 0.3 GeV/c  |





**Proton Candidates** 



### Proton Multiplicity in $\nu_{\mu}$ CC $0\pi$

#### $CC1\mu Np$ Selection







#### CC1µ2p Selection



#### **MICROBOONE-NOTE-1056-PUB**

- proton momenta > 300 MeV/c
- Currently performing shape-only/stat uncertainty only
- systematic uncertainties, abs. normalization, and more than 3x the data soon
- separate analysis focused on CC1µ2p selection



### An impressive event





#### **Conclusions**

- MicroBooNE is breaking new ground in measurements of neutrino-nucleon cross sections
- first double/single differential cross-section  $v_{\mu}$ -Argon
- Cosmic rejection, particle identification, vertex reconstruction
- continue to extend the understanding neutrino interactions and develop tuned interaction model matching  $\nu\textsc{-Ar}$  data
- Already have sensitivity to exclude existing models



MICROBOONE Preliminary

NuMI POT=2.4e20

Area Normalised

Entries [A.U.]

0.06







Collection Plane dE/dx [MeV/cm]

N InTime

# **Backup slides**



### First double-differential $\nu_{\mu}$ -Ar Cross-Section Measurement

#### The final single-differential $v_{\mu}$ CC inclusive cross section on argon





| Error Source           | Method                                    | Estimated Relative<br>Uncertainty |
|------------------------|-------------------------------------------|-----------------------------------|
| Beam Flux              | Estimated with multisim variations        | 12%                               |
| Cross Section Modeling | Estimated with multisim variations        | 4%                                |
| Detector Response      | Estimated with unisim variations          | 19%                               |
| POT Counting           | Toroids Resolution                        | 2%                                |
| Cosmics (in-time)      | Estimated from data-driven cosmic model   | 7%                                |
| Cosmics (out-of-time)  | Estimated from off-beam statistics        | 1%                                |
| Beam Timing Jitter     | Estimated from on- minus off-beam flashes | 4%                                |



# **Cross Section Measurement**





| Model Element | GENIE v2 + MEC<br>(v2.12.2)    | <b>GENIE v3</b><br>(v3.00.04 G1810a0211a) | <b>NuWro</b><br>(19.02.1)                    |   |
|---------------|--------------------------------|-------------------------------------------|----------------------------------------------|---|
| Nuclear Model | Bodek-Ritchie Fermi<br>Gas [1] | Local Fermi<br>Gas [ <b>2, 3</b> ]        | Local Fermi<br>Gas [ <b>2, 3</b> ]           | ( |
| Quasi-elastic | Llewellyn-Smith [4]            | Nieves [ <b>2, 3</b> ]                    | Nieves [ <b>2, 3</b> ]                       |   |
| MEC           | Empirical [ <b>5</b> ]         | Nieves [ <b>2, 3</b> ]                    | Nieves [ <b>2, 3</b> ]                       |   |
| Resonant      | Rein-Seghal [6]                | Berger-Seghal [7]                         | Berger-Seghal [7] (pion production from [9]) |   |
| Coherent      | Rein-Seghal [6]                | Berger-Seghal [ <b>7</b> ]                | Berger-Seghal [7]                            |   |
| FSI           | hA [ <b>8</b> ]                | hA2018 [ <b>8</b> ]                       | Oset [ <b>10</b> ]                           |   |

### **GiBUU** (2019)

Consistent nuclear medium corrections throughout. Also uses a LFG model for nucleon momenta, a separate MEC model [11], and propagates final state particles according to the Boltzmann-Uehling-Uhlenbeck equations [11]



#### **Neutrino - Nucleon interaction**

- MicroBooNE interactions are dominated by CCQE and CCMEC interactions
- large variation in QE and MEC models across numerous theoretical predictions and generators
- low-energy protons offer an excellent probe into intra-nuclear re-scattering and correlated-nucleon interactions









## CC1µ2P Opening angle distribution





### **Booster Neutrino Beam production**















