MicroBooNE’s Search for a Photon-Like Low Energy Excess

Kathryn Sutton

On behalf of the MicroBooNE Collaboration

July 30th 2019
MiniBooNE Low Energy Excess (LEE)

- **MiniBooNE** - *Cherenkov detector* along the Booster Neutrino Beam (BNB) at FNAL operating since 2002
- Photon-like and electron-like interpretations

\[\gamma \text{ vs. } e^- \text{ Cherenkov rings} \]

Overlap of \(e^+e^- \) and other backgrounds.

\[\nu_e \rightarrow e^- W \rightarrow n p \]
NC Δ Radiative Decay: What We Know

- Neutral current (NC) Δ resonant production followed by Δ radiative decay is a **SM source of single photons**
 - $\Delta \rightarrow N \gamma$ (0.6%) is subdominant to $\Delta \rightarrow N\pi^0$ (99.4%)
- Large associated cross-section uncertainty
NC Δ Radiative Decay: LEE Interpretation

- Interested in Δ resonant production + radiative decay to as photon-like interpretation of LEE
- MiniBooNE would require a factor of 3 enhancement to the SM rate to explain excess. We use unfolding to translate that prediction to MicroBooNE: MICROBOONE-NOTE-1043-PUB
Reconstruction in MicroBooNE

- LArTPC's combine time information from PMTs and hits on the wire planes to create 3D reconstructed images

\[e^-/\gamma \] separation for showers from:
- \(\frac{dE}{dx} \)
- photon conversion distance

![Conversion gap](image-url)
MicroBooNE Single Photon Analysis Overview

1. Take Pandora reconstructed tracks and showers

2. Find candidate vertices with topological selection and pre-selection cuts

3. Remove background using 2 tailored Boosted Decision Trees:
 - Cosmic Rejection
 - BNB (Neutrino) Background Rejection

3.5 Additional background filtering with Deep Learning techniques

4. Goal is a high sensitivity search for NC Δ Radiative Decays, as an interpretation of the MiniBooNE LEE
1. Take Pandora reconstructed tracks and showers

2. Find candidate vertices with topological selection and pre-selection cuts

3. Remove background using 2 tailored Boosted Decision Trees:
 - Cosmic Rejection
 - BNB (Neutrino) Background Rejection

3.5 Additional background filtering with Deep Learning techniques

4. Goal is a high sensitivity search for NC Δ Radiative Decays, as an interpretation of the MiniBooNE LEE
Topological Selections

1γ1p is our primary analysis. The existence of a short proton-like track improves reconstruction efficiency.

- 45.3% of true 1γ events
- 26% reconstruction efficiency with 1 track and 1 shower requirement and pre-selection cuts

1γ0p is more difficult, but provides a secondary dataset for comparison and verification.

- 54.7% of true 1γ events
- 9% reconstruction efficiency with 0 track and 1 shower requirement and pre-selection cuts

*γ conversion length in Ar ~14cm

2. Find candidate vertices with topological selection
$1\gamma 1p$ Pre-Selection Cuts Stage

- Pre-selection cuts applied

- Find candidate vertices with topological selection

- NC Δ radiative simulated events with 3x SM prediction

- Signal NC Δ radiative separated from other NC Δ radiative with truth-level reconstructability requirements

- Dominated by BNB (neutrino) and cosmic backgrounds, subleading background contributions from dirt interactions

- $4.8e19$ POT is the current unblinded data: <5% of MicroBooNE total expected on-beam data (13.2e20POT)
1. Take Pandora reconstructed tracks and showers

2. Find candidate vertices with topological selection and pre-selection cuts

3. Remove background using 2 tailored Boosted Decision Trees:
 - Cosmic Rejection
 - BNB (Neutrino) Background Rejection

4. Goal is a high sensitivity search for NC Δ Radiative Decays, as an interpretation of the MiniBooNE LEE

3.5 Additional background filtering with Deep Learning techniques
Dual Boosted Decision Trees (BDT's)

- BDT’s train on kinematic and calorimetric variables → output a score per event from background-like to signal-like
- Train two BDT’s for BNB (neutrino) and cosmic backgrounds with the NC Δ radiative signal

Higher energy tracks mainly from μ backgrounds

Cosmic showers point up/down from top of detector

11 BNB BDT Training Variables

13 Cosmic BDT Training Variables
Dual Boosted Decision Tree Cuts

Train two BDTs independently to target BNB and cosmic backgrounds. **BDT cuts optimized simultaneously** → keep only events that pass both cuts for final selection.

3. Remove background using 2 tailored boosted Decision Trees
MicroBooNE Single Photon Analysis Overview

1. Take Pandora reconstructed tracks and showers

2. Find candidate vertices with topological selection and pre-selection cuts

3. Remove background using 2 tailored Boosted Decision Trees:
 - Cosmic Rejection
 - BNB (Neutrino) Background Rejection

4. Goal is a high sensitivity search for NC Δ Radiative Decays, as an interpretation of the MiniBooNE LEE

3.5 Additional background filtering with Deep Learning techniques
1γ1p Final Selection

Purity: 0.12%

Apply BDT cuts

Pre-selection cuts applied

- Predicted $m_\Delta = 1.21 \pm 0.13$ GeV, expected $m_\Delta = 1.232$ GeV
- Apply reconstructed shower energy correction to account for bias toward lower reconstructed than true energy
- Strong rejection of cosmic and dirt backgrounds

4. Goal is a high sensitivity search for NC Δ Radiative Decays
Remaining Backgrounds

NC ν^0 background:
\[\nu_\mu + p \rightarrow \nu_\mu + \Delta^+ \rightarrow p + \pi^0 \rightarrow \gamma + \gamma \]

Dominant background is mis-identified NC π^0 events in which one shower is not reconstructed or associated to the vertex \rightarrow dual approach with targeted NC π^0 second shower search and NC π^0 sideband constraint
Simulated $\Delta \rightarrow p\gamma$ event that passes the final selection
Data event that passes the final selection as a $\Delta \rightarrow p\gamma$ candidate event
Second shower candidate likely from $\pi^0 \rightarrow \gamma + \gamma$ is missed in reconstruction because of coincident cosmic ray.
1. Take Pandora reconstructed tracks and showers

2. Find candidate vertices with topological selection and pre-selection cuts

3. Remove background using 2 tailored Boosted Decision Trees:
 - Cosmic Rejection
 - BNB (Neutrino) Background Rejection

3.5 Additional background filtering with Deep Learning techniques

4. Goal is a high sensitivity search for NC Δ Radiative Decays, as an interpretation of the MiniBooNE LEE
Need to identify NC π⁰'s where the second shower isn't associated to the vertex for background rejection.
Semantic Segmentation Network (SSNet) Shower-Tagging

- Hits-based approach augments Pandora reconstruction by targeting shower candidates
- Convolutional neural net which tags pixels as shower-like or track-like: Phys. Rev. D 99 (2019), 092001

3.5 Additional background filtering using Deep Learning techniques
Summary and Next Steps

- Current $1\gamma 1p$ selection shows **strong rejection of cosmic and dirt backgrounds**
- Additional $1\gamma 0p$ channel increases total sensitivity but likely with higher backgrounds
- Further reducing the dominant NC π^0 background to $1\gamma 1p$ will significantly improve sensitivity:
 - **Second shower search** to identify mis-reconstructed NC π^0 events that pass current selection cuts
 - **NC π^0 sideband constraint**
- Full **systematic uncertainties** studies underway
- Working towards finalizing analysis and results!

Following talk in this session!

Andrew Mogan: “Constraining the Neutral Current π^0 Background for MicroBooNE’s Single-Photon Search”
Thanks!

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by ORAU under contract number DE-SC0014664.
Backup
LArTPC operating at FNAL along the Booster Neutrino Beam (BNB) since 2015
1γ1p BDT Training Variables

Cosmic BDT:
1. Truncated Mean Track dE/dx
2. Shower Energy
3. Shower Theta yz
4. Shower Conversion Dist
5. Track Kinetic Energy
6. Shower Length
7. Ratio of track dE/dx start/end
8. Shower Phi yx
9. Track Phi yx
10. Cosine between Track and Shower
11. Track Theta yz
12. Shower Median dE/dx Plane 2
13. Track Length

BNB BDT:
1. Truncated Mean Track dE/dx
2. Shower Energy
3. Track Kinetic Energy
4. Shower Conversion Dist
5. Shower Length
6. Ratio of track dE/dx start/end
7. Shower Median dE/dx Plane 2
8. Cosine between Track and Shower
9. Shower Theta yz
10. Shower Phi yx
11. Track Length
$1\gamma 0p$ BDT Responses

In Progress

MicroBooNE $1\gamma 0p$ 4.8e19 POT

- Signal NC Δ Radiative
- BNB Backgrounds
- Other NC Δ Radiative
- Dirt Background
- Cosmic Background
- MC Stats Only Error

On-Beam Data

(BN$2\chi^2$/nDOF: 3.57/12)

_data

(BN$2\chi^2$/nDOF: 6.84/11)
$1\gamma_0p$ Final Selection

MicroBooNE

- Signal 1
- BNB Backgrounds
- Cosmic Background
- Other NC Δ Radiative
- Dirt Background
- MC Stats Only Error

On-Beam Data

$1\gamma_0p$ 4.8e19 POT

In Progress

([χ²/nDOF: 17.92/24])

MicroBooNE Simulation

- Signal NC Δ Radiative
- BNB Backgrounds
- Cosmic Background
- Other NC Δ Radiative
- Dirt Background
- MC Stats Only Error

$1\gamma_0p$ 4.8e19 POT

In Progress
Reconstructed Shower Energy Correction

- Frequently reconstruction correctly identifies a shower and it’s direction but not all of the hits are included
 - Missed hits → missing energy for reconstructed object
- Apply ~25% scaling to reconstructed shower energy to correct for this bias
- Scaling derived from linear fit to reconstructed vs. true energy distribution for large sample of photons