Overcoming Neutrino Interaction Mis-modeling with DUNE-PRISM

APS: Division of Particles and Fields 2019
Northeastern University, Boston
2019-08-01
Luke Pickering for the DUNE collaboration
Do say: I love DUNE!, Don't say: <anything> the DUNE experiment <anything else>
1) Interaction with matter in flavor eigenstate defined by charged lepton.
Oscillations

1) Interaction with matter in flavor eigenstate defined by charged lepton.

e.g. Neutrinos from accelerators created as muon neutrinos from pion and kaon decays
Oscillations

e.g. Neutrinos from accelerators created as muon neutrinos from pion and kaon decays

1) Interaction with matter in flavor eigenstate defined by charged lepton.

\[\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \]

Pontecorvo–Maki–Nakagawa–Sakata

2) Propagate as superposition of mass/energy eigenstates over experimental baseline (1300 km)
Oscillations

e.g. Neutrinos from accelerators created as muon neutrinos from pion and kaon decays

1) Interaction with matter in flavor eigenstate defined by charged lepton.

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
= \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

2) Propagate as superposition of mass/energy eigenstates over experimental baseline (1300 km)

3) Projecting back to flavor eigenstates reveals a different flavor mixture.
 (if |Δm^2_{ij}| ≠ 0)
Disappearance at the Far detector

- ‘Surviving’ muon neutrinos show characteristic oscillation shape.
- Use details of spectra to infer physics parameters of interest (mixing angles, mass differences, CPV phase)
- Similarly compare to ‘appeared’ electron spectra.
An Oscillation Analysis (OA) in one slide

- Constrained prediction of oscillated observables
- Data → Infer oscillation probabilities
- Predict observables
- Data → constrain interaction physics
- Constrained prediction of oscillated observables
- Data → Infer oscillation probabilities
- Predict neutrino flux from beam sim.

Arxiv: 1512.06148
Why are neutrino interaction models important?

- Observe event rate not neutrino flux
- Cannot perfectly reconstruct neutrino energy
- Require models to predict observables and infer oscillation features in true neutrino energy spectra
- Mis-modelling in reconstructed energy feed-down \(\rightarrow\) biased parameter measurements.

\[
\begin{align*}
N_{\text{far}}(x_{\text{obs}}) &= \int dx_{\text{true}} \frac{D_{\text{far}}(x_{\text{obs}}|x_{\text{true}})}{\text{Smearing, Eff., Pur.}} N_{\text{targ}} \sigma(x_{\text{true}}) \Phi_{\text{far}}(E_{\nu}) P_{\text{osc}}(E_{\nu}) \frac{N_{\text{Int}}(x_{\text{true}})}{N_{\text{Int}}(x_{\text{true}})} \\
N_{\text{near}}(x_{\text{obs}}) &= \int dx_{\text{true}} \frac{D_{\text{near}}(x_{\text{obs}}|x_{\text{true}})}{\text{Smearing, Eff., Pur.}} N_{\text{targ}} \sigma(x_{\text{true}}) \Phi_{\text{near}}(E_{\nu}) \frac{N_{\text{Int}}(x_{\text{true}})}{N_{\text{Int}}(x_{\text{true}})}
\end{align*}
\]
Why are neutrino interaction models important?

- Observe event rate not neutrino flux
- Cannot perfectly reconstruct neutrino energy
- Require models to predict observables and infer oscillation features in true neutrino energy spectra
- Mis-modelling in reconstructed energy feed-down → biased parameter measurements.

What we actually see

- Observed event rate not neutrino flux

What we want to understand

- Need to understand this!
Spotting a Problem
DUNE-PRISM

- Neutrino beam from boosted pion and kaon decays:
 - peak-energy is lower when detector is physically away from neutrino beam axis
- A mobile near detector could take data in a range of neutrino fluxes without disrupting far detector data-taking
Improvise

- Problems in flux/interaction/detector modelling can be hard to deconvolve by single event rate measurement (e.g. on-axis (OA) only)

- **Case study**: 20% proton KE → neutron and apply plausible new xsec to make hard to see on axis.
Improvise

- Problems in flux/interaction/detector modelling can be hard to deconvolve by single event rate measurement (e.g. on-axis (OA) only)

- **Case study**: 20% proton KE → neutron and apply plausible new xsec to make hard to see on axis.
- But as you go off-axis...

\[
N_{\text{near}} (x_{\text{obs}}) = \int dx_{\text{true}} \frac{D_{\text{near}} (x_{\text{obs}}|x_{\text{true}}) N_{\text{targ}} \sigma (x_{\text{true}}) \Phi_{\text{near}} (E_{\nu})}{N_{\text{int}} (x_{\text{true}})}
\]

Event rate / (1.1x10^{21} POT)

- Smearing, Eff., Pur.

DUNE Preliminary

4 m Off-axis

Selected ND
Sel. wrong sign
Sel. NC
Sel. 20% Missing Proton Energy
Improvises

\[N_{\text{near}}(x_{\text{obs}}) = \int dx_{\text{true}} D_{\text{near}}(x_{\text{obs}}|x_{\text{true}}) \frac{N_{\text{targ}}\sigma(x_{\text{true}}) \Phi_{\text{near}}(E_\nu)}{N_{\text{int}}(x_{\text{true}})} \]

Smearing, Eff., Pur.

- Problems in flux/interaction/detector modelling can be hard to deconvolve by single event rate measurement (e.g. on-axis (OA) only).

- **Case study:** 20% proton KE → neutron and apply plausible new xsec to make hard to see on axis.

- But as you go off-axis...
 - The same combination of modelling problems unlikely to describe the data well.
Improvise

\[N_{\text{near}}(x_{\text{obs}}) = \int dx_{\text{true}} \frac{D_{\text{near}}(x_{\text{obs}}|x_{\text{true}})}{N_{\text{targ}}(x_{\text{true}})} \Phi_{\text{near}}(E_{\nu}) \]

Smearing, Eff., Pur.

\[N_{\text{Int}}(x_{\text{true}}) \]

- Problems in flux/interaction/detector modelling can be hard to deconvolve by single event rate measurement (e.g. on-axis (OA) only).

- **Case study**: 20% proton KE → neutron and apply plausible new xsec to make hard to see on axis.

- But as you go off-axis...
 - The same combination of modelling problems unlikely to describe the data well.
Improvise

\[N_{\text{near}}(x_{\text{obs}}) = \int dx_{\text{true}} D_{\text{near}}(x_{\text{obs}}|x_{\text{true}}) N_{\text{targ}} \sigma(x_{\text{true}}) \Phi_{\text{near}}(E_{\nu}) \]

- Problems in flux/interaction/detector modelling can be hard to deconvolve by single event rate measurement (e.g. on-axis (OA) only)

- **Case study**: 20% proton KE → neutron and apply plausible new xsec to make hard to see on axis.

- But as you go off-axis...
 - The same combination of modelling problems unlikely to describe the data well.
Sidestepping a Problem
What Do We Really Want To Know?

- Constrained prediction of oscillated observables
- Data → Infer oscillation probabilities
- Predict observables
- Data → constrain interaction physics
- Ultimately need a **prediction of the FD observable** event rate for a given oscillation.
- Can predict FD flux for any oscillation hypothesis with flux model, but energy feed-down means we can only predict observables with an interaction model...
- Can we use the ND data to tell us about the feed-down **without invoking an interaction model**?
Adapt

- Predict Near flux spectrum.
Adapt

- Predict Near flux spectrum.
- Can predict Far flux under various oscillation hypotheses

\[\Phi_{\text{far}}(E_{\nu}) P_{\text{osc}}(E_{\nu}) \]
Adapt

- Predict Near flux spectrum.
- Can predict Far flux under various oscillation hypotheses
 \[\Phi_{\text{far}}(E_\nu) \cdot P_{\text{osc}}(E_\nu) \]
- Use Near flux energy spectrum at different off axis positions as a linear basis and solve:
 \[\Phi_{\text{near}}(E_\nu, x_{\text{off axis}}) \times \tilde{c} = \Phi_{\text{far}}(E_\nu) \cdot P_{\text{osc}}(E_\nu) \]
Adapt

- Predict Near flux spectrum.
- Can predict Far flux under various oscillation hypotheses
 \[\Phi_{\text{far}}(E_{\nu}) P_{\text{osc}}(E_{\nu}) \]
- Use Near flux energy spectrum at different off axis positions as a linear basis and solve:
 \[\Phi_{\text{near}}(E_{\nu}, x_{\text{off axis}}) \times \vec{c} = \Phi_{\text{far}}(E_{\nu}) P_{\text{osc}}(E_{\nu}) \]
- Each oscillation hypothesis yields a different set of weighting coefficients: \(\vec{c} \)
\[\sin^2 \theta_{23} = 0.48, \Delta m_{32}^2 = 2.35 \times 10^{-3} \]

Fluxes up to 35.0 m

Valid region

DUNE
DEEP UNDERGROUND
NEUTRINO EXPERIMENT
\[\sin^2 \theta_{23} = 0.5, \Delta m^2_{32} = 2.4 \times 10^{-3} \]

Fluxes up to 35.0 m

Fit region

\[\Delta m^2_{32}, 10^{-3} \text{ eV} \]

\[\sin^2(\theta_{23}) \]

T2K 2018
NOvA 2018
NuFit v4
$\sin^2 \theta_{23} = 0.54, \Delta m_{32}^2 = 2.55 \times 10^{-3}$

Fluxes up to 35.0 m

- Fit region

$\phi \left[\text{cm}^{-2} \text{ per POT per GeV} \right]$

$E_{\nu} \left[\text{GeV} \right]$

$D_{\text{nu} \to \text{osc}}$

$D_{\text{nu} \to \text{unosc}}$

$\times 10^{-7}$ $\sin^2 \theta_{23} = 0.54, \Delta m_{32}^2 = 2.55 \times 10^{-3}$

$\times 10^{-15}$
Adapt

- If we can take an ND measurement with $\Phi_{\text{near}}(E_\nu) = \Phi_{\text{near}}(E_\nu, x_{\text{off axis}}) \times \bar{c} = \Phi_{\text{far}}(E_\nu) P_{\text{osc}}(E_\nu)$ then $N_{\text{near}}(x_{\text{obs}})$ is the same as $N_{\text{far}}(x_{\text{obs}})$ up to detector effects!
Overcome

- **Aim:** Rearrange ND data to predict FD
 - Unknown XSec features automatically transferred
 - Minimize XSec dependence and take advantage of ND/FD flux cancellations
 - N/F detector differences must be included in any analysis

- Robust to mis-modelling in observable energy distribution as use near data to fill most of the far ‘prediction’!
Overcome

- **Aim:** Rearrange ND data to predict FD
 - Unknown XSec features automatically transferred
 - Minimize XSec dependence and take advantage of ND/FD flux cancellations
 - N/F detector differences must be included in any analysis
- Robust to **mis-modelling** in observable energy distribution as use near data to fill most of the far ‘prediction’!
Summary

- Problems in neutrino interaction models can be hard to see & fix with on-axis near detector only
- Comparing data taken in different neutrino energy spectra can illuminate such mis-modelling.
- Using linear combination of near detector data to make far detector predictions can result in an oscillation analysis that is robust to a large range of cross-section modelling problems.
Thanks for listening
DUNE-PRISM Propagation

- **Aim:** Rearrange ND data to predict FD
 - Unknown XSec features automatically transferred
 - Minimize XSec dependence and take advantage of N/F flux cancellations
 - N/F detector difference unavoidable in any analysis

- **In each systematic universe/fit step:**
 1. Select data at ND
 2. Subtract ND backgrounds with MC prediction
 3. Correct for differences in N/F selection, resolution, fiducial mass
 4. Perform Flux match
 5. Linearly combine ND data
 6. Add FD Flux match MC correction
 7. Add FD backgrounds with MC prediction
 8. Evaluate GOF
Selected ND Event Rate

- Taking more granular steps near on-axis can mitigate edge-effects in the selection.
 - Future: Optimize stop plan
Predicted Event Rate Off Axis

<table>
<thead>
<tr>
<th>Stop</th>
<th>Run duration</th>
<th>All int. Nν_{μ} CC</th>
<th>NSel</th>
<th>WSB</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 m</td>
<td>$\frac{1}{2}$ yr.</td>
<td>25.5M</td>
<td>11.3M</td>
<td>0.2%</td>
<td>1.4%</td>
</tr>
<tr>
<td>4 m</td>
<td>$\frac{1}{16}$ yr.</td>
<td>2.7M</td>
<td>1.4M</td>
<td>0.3%</td>
<td>1.1%</td>
</tr>
<tr>
<td>8 m</td>
<td>$\frac{1}{16}$ yr.</td>
<td>1.6M</td>
<td>790,000</td>
<td>0.4%</td>
<td>1.0%</td>
</tr>
<tr>
<td>12 m</td>
<td>$\frac{1}{16}$ yr.</td>
<td>770,000</td>
<td>390,000</td>
<td>0.7%</td>
<td>0.8%</td>
</tr>
<tr>
<td>16 m</td>
<td>$\frac{1}{16}$ yr.</td>
<td>420,000</td>
<td>210,000</td>
<td>1.0%</td>
<td>0.7%</td>
</tr>
<tr>
<td>20 m</td>
<td>$\frac{1}{16}$ yr.</td>
<td>250,000</td>
<td>130,000</td>
<td>1.3%</td>
<td>0.8%</td>
</tr>
<tr>
<td>24 m</td>
<td>$\frac{1}{16}$ yr.</td>
<td>160,000</td>
<td>80,000</td>
<td>1.7%</td>
<td>0.7%</td>
</tr>
<tr>
<td>28 m</td>
<td>$\frac{1}{16}$ yr.</td>
<td>110,000</td>
<td>52,000</td>
<td>2.1%</td>
<td>0.8%</td>
</tr>
<tr>
<td>32 m</td>
<td>$\frac{1}{16}$ yr.</td>
<td>81,000</td>
<td>36,000</td>
<td>2.4%</td>
<td>0.8%</td>
</tr>
</tbody>
</table>
Flux Uncertainties

-v-mode, Near, On axis, ν_μ, Errors

-v-mode, Near, 12 m Off axis, ν_μ, Errors

-v-mode, Near/Far ratio, ν_μ, Errors

DUNE Preliminary
ND Backgrounds

- Backgrounds that do not oscillate and vary differently as a function of off-axis position are subtracted before propagation.

- Most common:
 a. Neutral Current (Use on-axis to constrain ND and FD NCBkg)
 b. Wrong sign (worse in nubar-mode, use tracker to constrain WSBkg).
 c. Intrinsic nue

- These will get added back into the Far prediction later.
Selection Efficiency

- Must correct for differences in ND/FD selection efficiency.
- Want to avoid asking GENIE everywhere possible.
- Aim to develop data-driven geometric efficiency correction:
 a. Throw away events outside acceptance ND-FD high acceptance union
 b. Add MC events that are in FD but outside ND
Geometric Efficiency

- Preliminary work by Cris Vilela:
 - Random translation and rotation of energy deposits in selection volume
 a. Suggests 95% of events can be corrected in a model-independent data-driven way at the oscillation peak
 b. As expected from Chris Marshalls ND acceptance studies.
 c. Even higher fraction at lower energies.
Flux Matching Correction

- Flux matching not perfect in general:
 - Especially at higher energy due to on-axis configuration
- Difference between ‘target’ and ‘matched’ filled in with FD MC predictions.
 - This ‘filling in’ is the same as the tuned-prediction ‘dead-reckoning’ that makes the entire FD comparison in the standard analysis.
 - Here: Majority of FD prediction built with ND data.
FD Backgrounds

- Add back in any sources of FD background that we removed before:
 - Oscillated wrong sign background (Can use nu-mode ND data to build nubar-mode FD wrong sign prediction).
 - NC Backgrounds (Use on-axis ND to understand NCBkg.)