Abstract

As long-baseline efforts are ramped up over coming years, it is important understand how the presence of matter affects neutrino oscillations. In this talk I will discuss precision oscillation probability formulas with matter effects. We have developed expressions that are simple, precise, and an actual expansion in the small parameters: $\sin^2 \theta_{13}$ and $\Delta m_{21}^2 / \Delta m_{31}^2$. In addition, our expressions return to the exact expression in vacuum. I will also present some recent results on understanding CP violation in matter which show that the matter effect of the Jarlskog simply factorizes into atmospheric and solar contributions.

Neutrino Oscillation Probabilities in Matter

Peter B. Denton

DPF

July 29, 2019

Neutrino Oscillation Parameters Status

Six parameters:

1.
$$\theta_{13} = (8.6 \pm 0.1)^{\circ}$$

2. $\theta_{12} = (33.8 \pm 0.8)^{\circ}$
3. $\Delta m_{21}^2 = (7.4 \pm 0.2) \times 10^{-5} \text{ eV}^2$
4. $\theta_{23} \sim 45^{\circ} \text{ (octant)}$
5. $|\Delta m_{31}^2| = (2.52 \pm 0.03) \times 10^{-3} \text{ eV}^2 \text{ (mass ordering)}$
6. $\delta = ???$

NuFIT, 1811.05487

PMNS order allows for easy measurement of θ_{13} and θ_{12} . θ_{23} and δ_{CP} require full three-flavor description.

Peter B. Denton (BNL)

DPF: July 29, 2019 2/20

Analytic Oscillation Probabilities in Matter

 $\ensuremath{\boxtimes}$ Solar: $P_{ee}\simeq\sin^2\theta_\odot$

Approx: S. Mikheev, A. Smirnov, Nuovo Cim. C9 (1986) 17-26 Exact: S. Parke, PRL 57 (1986) 2322

 $\ensuremath{\boxtimes}$ Long-baseline: All three flavors

Exact: H. Zaglauer, K. Schwarzer, Z.Phys. C40 (1988) 273

Approx: PBD, H. Minakata, S. Parke, 1604.08167

 $\nabla \nu_e$ disappearance (neutrino factory): $\Delta \widehat{m}_{ee}^2 = \widehat{m}_3^2 - (\widehat{m}_1^2 + \widehat{m}_2^2 - \Delta m_{21}^2 c_{12}^2)$ PBD S Parke

PBD, S. Parke, 1808.09453

☐ Atmospheric

The Billion Dollar Question

What is
$$P(\nu_{\mu} \rightarrow \nu_{e})$$
?

 $P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = |\mathcal{A}_{\mu e}|^{2} \qquad \mathcal{A}_{\mu e} = \mathcal{A}_{31} + e^{\pm i \Delta_{32}} \mathcal{A}_{21}$ $\mathcal{A}_{31} = 2s_{13}c_{13}s_{23}\sin \Delta_{31}$ $\mathcal{A}_{21} = 2s_{12}c_{13}(c_{12}c_{23}e^{i\delta} - s_{12}s_{13}s_{23})\sin \Delta_{21}$

 $\Delta_{ij} = \Delta m^2{}_{ij}L/4E$

Peter B. Denton (BNL)

DPF: July 29, 2019 4/20

The Billion Dollar Question

What is
$$P(\nu_{\mu} \rightarrow \nu_{e})$$
?

 $P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) = |\mathcal{A}_{\mu e}|^{2} \qquad \mathcal{A}_{\mu e} = \mathcal{A}_{31} + e^{\pm i\Delta_{32}}\mathcal{A}_{21}$ $\mathcal{A}_{31} = 2s_{13}c_{13}s_{23}\sin\Delta_{31}$ $\mathcal{A}_{21} = 2s_{12}c_{13}(c_{12}c_{23}e^{i\delta} - s_{12}s_{13}s_{23})\sin\Delta_{21}$

 $\Delta_{ij} = \Delta m^2{}_{ij}L/4E$

...in matter?

Now: NOvA, T2K, MINOS, ... Upcoming: DUNE, T2HK, ... Second maximum: T2HKK? ESSnuSB? ...

Peter B. Denton (BNL)

DPF: July 29, 2019 4/20

Matter Effects Matter

Call Schrödinger equation's eigenvalues m_i^2 and eigenvectors U_i .

$$\mathcal{A}(\nu_{\alpha} \to \nu_{\beta}) = \sum_{i=1}^{3} U_{\alpha i}^{*} U_{\beta i} e^{-im_{i}^{2}L/2E} \qquad P = |\mathcal{A}|^{2}$$

In matter ν 's propagate in a new basis that depends on $a \propto \rho E$.

L. Wolfenstein, PRD 17 (1978)

Eigenvalues: $m_i^2 \to \widehat{m_i^2}(a)$ Eigenvectors are given by $\theta_{ij} \to \widehat{\theta}_{ij}(a) \quad \Leftarrow \quad \text{Unitarity}$

Peter B. Denton (BNL)

DPF: July 29, 2019 5/20

Three Bases

Hamiltonian Dynamics

$$H = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & \Delta m_{21}^2 & \\ & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + \begin{pmatrix} a & \\ & 0 & \\ & & 0 \end{pmatrix} \end{bmatrix}$$

$$a = 2\sqrt{2}G_F N_e E$$

$$U = \begin{pmatrix} 1 & & \\ & c_{23} & s_{23} \\ & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13}e^{-i\delta} \\ & 1 & \\ -s_{13}e^{i\delta} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ & & 1 \end{pmatrix}$$

Find eigenvalues and eigenvectors:

$$H = \frac{1}{2E} \widehat{U} \begin{pmatrix} 0 & & \\ & \Delta \widehat{m^2}_{21} & \\ & & \Delta \widehat{m^2}_{31} \end{pmatrix} \widehat{U}^{\dagger}$$

Computationally works, but we can do better than a black box ... Peter B. Denton (BNL) ...

Eigenvalues Analytically: The Exact Solution

Solve the cubic characteristic equation.

G. Cardano Ars Magna 1545

V. Barger, et al., PRD 22 (1980) 2718

H. Zaglauer, K. Schwarzer, Z.Phys. C40 (1988) 273

Eigenvalues (\widehat{m}_{i}^{2}) and eigenvectors $(\widehat{\theta}, \widehat{\delta})$ depend on S:

$$S = \cos\left\{\frac{1}{3}\cos^{-1}\left[\frac{2A^3 - 9AB + 27C}{2(A^2 - 3B)^{3/2}}\right]\right\}$$

A, B, and C depend on vacuum parameters and matter potential

Traded one **black box** for another...

Peter B. Denton (BNL)

DPF: July 29, 2019 8/20

We're physicists so ...

Perturbation theory

Peter B. Denton (BNL)

DPF: July 29, 2019 9/20

Alternative Solutions

 $\blacktriangleright s_{13}, s_{13}^2$

▶ Small matter potential: $a/\Delta m^2$

Y. Li, Y. Wang, Z-z. Xing, 1605.00900

A. Cervera, et al., hep-ph/0002108

H. Minakata, 0910.5545

K. Asano, H. Minakata, 1103.4387

J. Arafune, J. Sato, hep-ph/9607437

A. Cervera, et al., hep-ph/0002108

M. Freund, hep-ph/0103300

E. Akhmedov, et al., hep-ph/0402175

M. Blennow, A. Smirnov, 1306.2903

H. Minakata, S. Parke, 1505.01826

PBD, H. Minakata, S. Parke, 1604.08167

(See G. Barenboim, PBD, S. Parke, C. Ternes 1902.00517 for a review)

Peter B. Denton (BNL)

DPF: July 29, 2019 10/20

► $\Delta m_{21}^2 / \Delta m_{31}^2 \sim 0.03$

A Tale of Two Tools

Split the Hamiltonian into:

▶ Large, diagonal part (H_0)

Small, off-diagonal part (H_1) order

▶ Improves precision at zeroth order
 ▶ Naturally leads to using ∆m²_{ee} ≡ c²₁₂∆m²₃₁ + s²₁₂∆m²₃₂

H. Nunokawa, S. Parke, R. Zukanovich, hep-ph/0503283

1. Rotations:

- ▶ A two-flavor rotation only requires solving a quadratic
- ▶ Diagonalize away the big off-diagonal terms
- ▶ Follows the order of the PMNS matrix

2. Perturbative expansion:

- ▶ Smallness parameter is $|\epsilon'| \le 0.015$
- Correct eigenvalues (\widetilde{m}_{i}^{2}) and eigenvectors $(\widetilde{\theta}_{ij})$
- ▶ Eigenvalues already include 1st order corrections at 0th order
- Can improve the precision to arbitrary order

Roadmap

Order is lucky

order

MP15

DMP16 DPZ18

DPF: July 29, 2019 12/20

 Further precision through perturbation theory or rotations

Peter B. Denton (BNL)

1604.08167, 1806.01277

 $|\alpha_{12}|\bar{\alpha}_{12}|$

'1 st

order

Probability in Matter: DMP 0th

Matter expression \Rightarrow Vacuum expression

 $\widetilde{P}_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) = P_{\alpha\beta}(\Delta \widetilde{m^2}_{21}, \Delta \widetilde{m^2}_{31}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$

Same expression, 4 new variables.

Probability in Matter: DMP 0th Matter expression \Rightarrow Vacuum expression $\widetilde{P}_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) = P_{\alpha\beta}(\Delta \widetilde{m^2}_{21}, \Delta \widetilde{m^2}_{31}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$ Same expression, 4 new variables.

$$\cos 2\widetilde{\theta}_{13} = \frac{\Delta m_{ee}^2 \cos 2\theta_{13} - a}{\Delta \widetilde{m}_{ee}^2}$$
$$\Delta \widetilde{m}_{ee}^2 = \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$
See also PBD, S. Parke, 1808.09453

Probability in Matter: DMP 0th Matter expression \Rightarrow Vacuum expression $\widetilde{P}_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) = P_{\alpha\beta}(\Delta \widetilde{m^2}_{21}, \Delta \widetilde{m^2}_{31}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$ Same expression, 4 new variables.

$$\cos 2\widetilde{\theta}_{13} = \frac{\Delta m_{ee}^2 \cos 2\theta_{13} - a}{\Delta \widetilde{m^2}_{ee}}$$
$$\Delta \widetilde{m^2}_{ee} = \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$
See also PBD, S. Parke, 1808.09453
$$\cos 2\widetilde{\theta}_{12} = \frac{\Delta m_{21}^2 \cos 2\theta_{12} - a_{12}}{\widetilde{\omega}_{ee}^2 - a_{12}}, \qquad a_{12} = (a + \Delta m_{ee}^2 - \Delta \widetilde{m^2}_{ee})/2$$

$$\cos 2\theta_{12} = \frac{1}{\Delta \widetilde{m}_{21}^2}, \qquad a_{12} = (a + \Delta m_{ee}^2 - \Delta m_{ee}^2)/2$$
$$\Delta \widetilde{m}_{21}^2 = \Delta m_{21}^2 \sqrt{(\cos 2\theta_{12} - a_{12}/\Delta m_{21}^2)^2 + \cos^2(\widetilde{\theta}_{13} - \theta_{13})\sin^2 2\theta_{12}}$$

Peter B. Denton (BNL)

DPF: July 29, 2019 13/20

Probability in Matter: DMP 0th Matter expression \Rightarrow Vacuum expression $\widetilde{P}_{\alpha\beta}(\Delta m_{21}^2, \Delta m_{31}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) = P_{\alpha\beta}(\Delta \widetilde{m^2}_{21}, \Delta \widetilde{m^2}_{31}, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$ Same expression, 4 new variables.

$$\cos 2\tilde{\theta}_{13} = \frac{\Delta m_{ee}^2 \cos 2\theta_{13} - a}{\Delta \widetilde{m^2}_{ee}}$$

$$\Delta \widetilde{m^2}_{ee} = \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$$
See also PBD, S. Parke, 1808.09453

$$\cos 2\tilde{\theta}_{12} = \frac{\Delta m_{21}^2 \cos 2\theta_{12} - a_{12}}{\Delta \widetilde{m^2}_{21}}, \qquad a_{12} = (a + \Delta m_{ee}^2 - \Delta \widetilde{m^2}_{ee})/2$$

$$\Delta \widetilde{m^2}_{21} = \Delta m_{21}^2 \sqrt{(\cos 2\theta_{12} - a_{12}/\Delta m_{21}^2)^2 + \cos^2(\widetilde{\theta}_{13} - \theta_{13})\sin^2 2\theta_{12}}}$$

$$\Delta \widetilde{m^2}_{31} = \Delta m_{31}^2 + \frac{1}{4}a + \frac{1}{2}(\Delta \widetilde{m^2}_{21} - \Delta m_{21}^2) + \frac{3}{4}(\Delta \widetilde{m^2}_{ee} - \Delta m_{ee}^2)$$

Peter B. Denton (BNL)

DPF: July 29, 2019 13/20

DUNE: NO, $\delta = 3\pi/2$		First min	First max	
$P(\nu_{\mu} \rightarrow \nu_{e})$		0.0047	0.081	
E (GeV)		1.2	2.2	
$\frac{ \Delta P }{P}$	Zeroth	5×10^{-4}	4×10^{-4}	
	First	3×10^{-7}	2×10^{-7}	
	Second	6×10^{-10}	5×10^{-10}	

The CPV Term in Matter The amount of CPV is

$$P_{\alpha\beta} - \bar{P}_{\alpha\beta} = \pm 16J \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32} \qquad \alpha \neq \beta$$

where the Jarlskog is

$$J \equiv \Im[U_{e1}U_{\mu 2}U_{e2}^*U_{\mu 1}^*]$$
$$J = c_{12}s_{12}c_{13}^2s_{13}c_{23}s_{23}\sin\delta$$

C. Jarlskog, PRL 55 (1985)

The exact term in matter is known to be

$$\frac{\widehat{J}}{J} = \frac{\Delta m_{21}^2 \Delta m_{31}^2 \Delta m_{32}^2}{\Delta \widehat{m^2}_{21} \Delta \widehat{m^2}_{31} \Delta \widehat{m^2}_{32}}$$

V. Naumov, IJMP 1992

P. Harrison, W. Scott, hep-ph/9912435

Our approximation reproduces this order by order in ϵ'

Peter B. Denton (BNL)

1604.08167

DPF: July 29, 2019 15/20

CPV in Matter

CPV in matter can be written sans $\cos(\frac{1}{3}\cos^{-1}(\cdots))$ term.

$$\frac{\widehat{J}}{J} = \frac{\Delta m_{21}^2 \Delta m_{31}^2 \Delta m_{32}^2}{\Delta \widehat{m^2}_{21} \Delta \widehat{m^2}_{31} \Delta \widehat{m^2}_{32}}$$

 $\left(\Delta \widehat{m^2}_{21} \Delta \widehat{m^2}_{31} \Delta \widehat{m^2}_{32}\right)^2 = (A^2 - 4B)(B^2 - 4AC) + (2AB - 27C)C$

$$\begin{split} A &\equiv \sum_{j} \widehat{m^{2}}_{j} = \Delta m_{31}^{2} + \Delta m_{21}^{2} + a \\ B &\equiv \sum_{j>k} \widehat{m^{2}}_{j} \widehat{m^{2}}_{k} = \Delta m_{31}^{2} \Delta m_{21}^{2} + a (\Delta m_{ee}^{2} c_{13}^{2} + \Delta m_{21}^{2}) \\ C &\equiv \prod_{j} \widehat{m^{2}}_{j} = a \Delta m_{31}^{2} \Delta m_{21}^{2} c_{13}^{2} c_{12}^{2} \end{split}$$

This is the *only* oscillation quantity in matter that can be written exactly without $\cos(\frac{1}{3}\cos^{-1}(\cdots))!$

Peter B. Denton (BNL)

1902.07185

DPF: July 29, 2019 16/20

CPV in Matter

Thus \widehat{J}^2 is fourth order in matter potential: only two matter corrections are needed.

$$\frac{\widehat{J}}{J} = \frac{1}{|1 - (a/\alpha_1)e^{i2\theta_1}||1 - (a/\alpha_2)e^{i2\theta_2}|}$$

CPV in Matter

Thus \widehat{J}^2 is fourth order in matter potential: only two matter corrections are needed.

$$\frac{\hat{J}}{J} = \frac{1}{|1 - (a/\alpha_1)e^{i2\theta_1}||1 - (a/\alpha_2)e^{i2\theta_2}|}$$

CPV in matter can be well approximated:

$$\frac{\widehat{J}}{J} \approx \frac{1}{|1 - (a/\Delta m_{ee}^2)e^{i2\theta_{13}}||1 - (c_{13}^2 a/\Delta m_{21}^2)e^{i2\theta_{12}}|}$$
PBD, Parke, 1902

See also X. Wang, S. Zhou, 1901.10882

Peter B. Denton (BNL)

1902.07185

DPF: July 29, 2019 17/20

.07185

CPV In Matter Approximation Precision

DPF: July 29, 2019 18/20

New Physics

DUNE and T2HK will unprecedented capabilities to test the three-neutrino oscillation picture

Extend DMP to new physics progress report:

🗹 Sterile

S. Parke, X. Zhang, 1905.01356

See Xining's talk tomorrow at 4:45 here!

□ NSI

□ Neutrino decay

□ Decoherence

· · · ·

Peter B. Denton (BNL)

DPF: July 29, 2019 19/20

Key Points

- ▶ Long-baseline oscillations are fundamentally three-flavor
- \triangleright Rotate **large terms first** \Rightarrow PMNS order, removes level crossings
- \triangleright 0th order probabilities: **same structure as vacuum** probabilities
- \triangleright 0th order: **accurate** enough for current & future experiments
- > Exact and approximate CPV in matter are **simpler** than expected

Backups

Peter B. Denton (BNL)

DPF: July 29, 2019 21/20

Analytic Oscillation Probability Collaborators

Stephen Parke Hisakazu Minakata Gabriela Barenboim

Xining Zhang Christoph Ternes

1604.08167, 1806.01277, 1808.09453, 1902.00517, 1902.07185, 1907.02534 github.com/PeterDenton/Nu-Pert github.com/PeterDenton/Nu-Pert-Compare

Peter B. Denton (BNL)

DPF: July 29, 2019 22/20

Variable Matter Density

We assume ρ is constant. Is this okay?

If ρ varies only "slowly," we can set ρ to the average:

$$\rho(x) \to \bar{\rho} = \frac{1}{L} \int_0^L \rho(x) dx$$

 ρ doesn't vary "too much" when

$$\left|\frac{d\widehat{\theta}}{dt}\right| \ll \left|\frac{\Delta \widehat{m^2}}{2E}\right|$$

True for DUNE?

Peter B. Denton (BNL)

DPF: July 29, 2019 23/20

Variable Matter Density

This is a great approximation at DUNE: \checkmark !

K. Kelly, S. Parke, 1802.06784

Peter B. Denton (BNL)

DPF: July 29, 2019 24/20

Eigenvalues Analytically: The Exact Solution

Solve the cubic characteristic equation.

$$\begin{split} \widehat{m^2}_1 &= \frac{A}{3} - \frac{1}{3}\sqrt{A^2 - 3B}S - \frac{\sqrt{3}}{3}\sqrt{A^2 - 3B}\sqrt{1 - S^2} \\ \widehat{m^2}_2 &= \frac{A}{3} - \frac{1}{3}\sqrt{A^2 - 3B}S + \frac{\sqrt{3}}{3}\sqrt{A^2 - 3B}\sqrt{1 - S^2} \\ \widehat{m^2}_3 &= \frac{A}{3} + \frac{2}{3}\sqrt{A^2 - 3B}S \\ A &= \Delta m_{21}^2 + \Delta m_{31}^2 + a \\ B &= \Delta m_{21}^2 \Delta m_{31}^2 + a \left[c_{13}^2 \Delta m_{31}^2 + (c_{12}^2 c_{13}^2 + s_{13}^2)\Delta m_{21}^2\right] \\ C &= a\Delta m_{21}^2 \Delta m_{31}^2 c_{12}^2 c_{13}^2 \\ S &= \cos\left\{\frac{1}{3}\cos^{-1}\left[\frac{2A^3 - 9AB + 27C}{2(A^2 - 3B)^{3/2}}\right]\right\} \end{split}$$

H. Zaglauer, K. Schwarzer, Z.Phys. C40 (1988) 273

Traded one **black box** for another...

Peter B. Denton (BNL)

DPF: July 29, 2019 25/20

Alternative Solutions: Example

ain22.0

$$P_{0} = \sin^{2}\theta_{23} \frac{\sin^{2}\omega_{13}}{C^{2}} \sin^{2}(\Delta \hat{C}), \quad (36a)$$

$$P_{\sin a} = \frac{1}{2} \alpha \frac{\sin \delta \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23}}{A\hat{C} \cos \theta_{13}^{2}} \sin(\hat{C} \hat{\Delta})$$

$$\times \{\cos(\hat{C} \hat{\Delta}) - \cos((1 + \hat{A}) \hat{\Delta})\}, \quad (36b)$$

$$P_{\cos b} = \frac{1}{2} \alpha \frac{\cos \delta \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13} \sin 2 \theta_{23}}{A\hat{C} \cos \theta_{13}^{2}} \sin(\hat{C} \hat{\Delta})$$

$$\times \{\sin((1 + \hat{A}) \hat{\Delta}) \mp \sin(\hat{C} \hat{\Delta})\}, \quad (36c)$$

$$P_{1} = -\alpha \frac{1 - \hat{A} \cos 2 \theta_{13}}{C^{2}} \sin^{2} \theta_{12} \sin^{2} \theta_{23} \sin^{2} \theta_{23} \hat{\Delta}$$

$$\times \sin(2\hat{\Delta}\hat{C}) + \alpha \frac{2\hat{A}(-\hat{A} + \cos 2 \theta_{13})}{C^{4}}$$

$$\times \sin^{2} \theta_{12} \sin^{2} 2 \theta_{13} \sin^{2} \theta_{22} \sin^{2} (\hat{\Delta}\hat{C}), \quad (36d)$$

$$P_{2} = \alpha \frac{\mp 1 + \hat{C} \pm \hat{A} \cos 2 \theta_{13}}{2\hat{C}^{2} \hat{A} \cos^{2} \theta_{13}} \cos \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{13}$$

$$\times \sin 2 \theta_{23} \sin^{2} (\hat{\Delta}\hat{C}), \quad (36e)$$

$$P_{3} = \alpha^{2} \frac{2\hat{C} \cos^{2} \theta_{23} \sin^{2} 2 \theta_{12}}{\hat{A}^{2} \cos^{2} \theta_{13}(\mp \hat{A} + \hat{C} \pm \cos 2 \theta_{13})}$$

$$\times \sin^{2} (\frac{1}{2} (1 + \hat{A} + \hat{C}) \hat{\Delta}), \quad (36f)$$
Peter B. Denton (BNL) DPF: July 29, 2019 26/2

DPF: July 29, 2019 26/20

40

"What is Δm_{ee}^2 ?"

$$\Delta m_{ee}^2 = c_{12}^2 \Delta m_{31}^2 + s_{12}^2 \Delta m_{32}^2 = \Delta m_{31}^2 - s_{12}^2 \Delta m_{21}^2$$

H. Nunokawa, S. Parke, R. Funchal, hep-ph/0503283

S. Parke, 1601.07464

Additional expressions for $\Delta m^2_{\mu\mu}, \Delta m^2_{\tau\tau}$

Useful definitions:

 \triangleright ν_e weighted average of atmospheric splittings:

$$m_3^2 - \frac{|U_{e1}|^2 m_1^2 + |U_{e2}|^2 m_2^2}{|U_{e1}|^2 + |U_{e2}|^2}$$

• Measured by reactor experiments with smallest L/E error

Simple form:

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{ee}$$

 $\Delta_{ij} = \Delta m^2_{ij} L/4E$

Neutrino Oscillations in Vacuum: Disappearance

It is easy to calculate the *exact* disappearance expression in vacuum:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4 \sum_{i < j} |U_{\alpha i}|^2 |U_{\alpha j}|^2 \sin^2 \Delta_{ji}$$

For the electron case this expression is simple:

$$P(\nu_e \to \nu_e) = 1$$

- $4c_{12}^2 s_{12}^2 c_{13}^4 \sin^2 \Delta_{21}$
- $4c_{12}^2 c_{13}^2 s_{13}^2 \sin^2 \Delta_{31}$
- $4s_{12}^2 c_{13}^2 s_{13}^2 \sin^2 \Delta_{32}$

$$\Delta_{ij} = \frac{\Delta m_{ij}^2 L}{4E}$$

$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

1604.08167

Expansion Parameter

Eigenvalues in Matter: Two Rotations are Needed

$$\widetilde{m^2}_a = a + (s_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2, \ \widetilde{m^2}_b = \epsilon c_{12}^2 \Delta m_{ee}^2, \ \widetilde{m^2}_c = (c_{13}^2 + \epsilon s_{12}^2) \Delta m_{ee}^2$$

Eigenvalues in Matter: Two Rotations are Needed

Eigenvalues in Matter: Two Rotations are Needed

Eigenvalues in Matter: Two Rotations are Needed

Eigenvalues in Matter: Mass Ordering

Peter B. Denton (BNL)

1604.08167

DPF: July 29, 2019 31/20

Exact Neutrino Oscillations in Matter: Mixing Angles

$$\begin{split} s_{12}^2 &= \frac{-\left[(\widehat{m^2}_2)^2 - \alpha \widehat{m^2}_2 + \beta\right] \Delta \widetilde{m^2}_{31}}{\left[(\widehat{m^2}_1)^2 - \alpha \widehat{m^2}_1 + \beta\right] \Delta \widetilde{m^2}_{32} - \left[(\widehat{m^2}_2)^2 - \alpha \widehat{m^2}_2 + \beta\right] \Delta \widetilde{m^2}_{31}} \\ s_{13}^2 &= \frac{(\widehat{m^2}_3)^2 - \alpha \widehat{m^2}_3 + \beta}{\Delta \widetilde{m^2}_{31} \Delta \widetilde{m^2}_{32}} \\ s_{23}^2 &= \frac{s_{23}^2 E^2 + c_{23}^2 F^2 + 2c_{23}s_{23}c_{\delta} EF}{E^2 + F^2} \\ e^{-i\delta} &= \frac{c_{23}^2 s_{23}^2 \left(e^{-i\delta} E^2 - e^{i\delta} F^2\right) + \left(c_{23}^2 - s_{23}^2\right) EF}{\sqrt{\left(s_{23}^2 E^2 + c_{23}^2 F^2 + 2EFc_{23}s_{23}c_{\delta}\right)\left(c_{23}^2 E^2 + s_{23}^2 F^2 - 2EFc_{23}s_{23}c_{\delta}\right)}} \\ \alpha &= c_{13}^2 \Delta m_{31}^2 + \left(c_{12}^2 c_{13}^2 + s_{13}^2\right) \Delta m_{21}^2, \ \beta &= c_{12}^2 c_{13}^2 \Delta m_{21}^2 \Delta m_{31}^2 \\ E &= c_{13}s_{13} \left[\left(\widehat{m^2}_3 - \Delta m_{21}^2\right) \Delta m_{31}^2 - s_{12}^2 \left(\widehat{m^2}_3 - \Delta m_{31}^2\right) \Delta m_{21}^2\right] \\ F &= c_{12}s_{12}c_{13} \left(\widehat{m^2}_3 - \Delta m_{31}^2\right) \Delta m_{21}^2 \end{split}$$

H. Zaglauer, K. Schwarzer, Z.Phys. C40 (1988) 273 1604.08167 DPF: July 29, 2019 32/20

$\widetilde{m^2}_{1,2} - \widetilde{\theta}_{12}$ Symmetry

From the shape of $U_{12}(\tilde{\theta}_{12})$, it is clear that the probabilities are invariant under a simultaneous interchange of

$$\widetilde{m^2}_1 \leftrightarrow \widetilde{m^2}_2$$
, and $\widetilde{\theta}_{12} \to \widetilde{\theta}_{12} \pm \frac{\pi}{2}$.

Since only even powers of $\tilde{\theta}_{12}$ trig functions $c_{12}^2, s_{12}^2, c_{12}s_{12}, \cos(2\tilde{\theta}_{12}), \sin(2\tilde{\theta}_{12})$ appear in the probabilities, the sign degeneracy is irrelevant.

More usefully, we can write that the probabilities are invariant under the simultaneous interchange of

$$\widetilde{m^2}_1\leftrightarrow \widetilde{m^2}_2\,,\qquad c^2_{\widetilde{12}}\leftrightarrow s^2_{\widetilde{12}}\,,\qquad \text{and}\qquad c_{\widetilde{12}}s_{\widetilde{12}}\to -c_{\widetilde{12}}s_{\widetilde{12}}\,.$$

This interchange constrains the $\sin^2 \Delta_{21}$ term, and the $\sin^2 \Delta_{32}$ term easily follows from the $\sin^2 \Delta_{31}$ term.

General Form of the First Order Coefficients

$$P_{\alpha\beta} = \delta_{\alpha\beta} + 4C_{21}^{\alpha\beta}\sin^2\Delta_{21} + 4C_{31}^{\alpha\beta}\sin^2\Delta_{31} + 4C_{32}^{\alpha\beta}\sin^2\Delta_{32} + 8D^{\alpha\beta}\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32}$$

Can reduce 8 expressions down to 3:

$$\begin{split} (C_{21}^{\alpha\beta})^{(1)} &= \epsilon' \Delta m_{ee}^2 \left(\frac{F_1^{\alpha\beta}}{\Delta \widetilde{m}_{31}^2} + \frac{F_2^{\alpha\beta}}{\Delta \widetilde{m}_{32}^2} \right) \\ (C_{31}^{\alpha\beta})^{(1)} &= \epsilon' \Delta m_{ee}^2 \left(\frac{F_1^{\alpha\beta} + G_1^{\alpha\beta}}{\Delta \widetilde{m}_{31}^2} - \frac{F_2^{\alpha\beta}}{\Delta \widetilde{m}_{32}^2} \right) \\ (C_{32}^{\alpha\beta})^{(1)} &= \epsilon' \Delta m_{ee}^2 \left(-\frac{F_1^{\alpha\beta}}{\Delta \widetilde{m}_{31}^2} + \frac{F_2^{\alpha\beta} + G_2^{\alpha\beta}}{\Delta \widetilde{m}_{32}^2} \right) \\ (D^{\alpha\beta})^{(1)} &= \epsilon' \Delta m_{ee}^2 \left(\frac{K_1^{\alpha\beta}}{\Delta \widetilde{m}_{31}^2} - \frac{K_2^{\alpha\beta}}{\Delta \widetilde{m}_{32}^2} \right) \end{split}$$

$$K_1^{\alpha\beta} = \mp s_{23}c_{23}c_{\overline{13}}s_{\overline{12}}^2(c_{\overline{13}}^2c_{\overline{12}}^2 - s_{\overline{13}}^2)s_\delta\,, \quad \alpha \neq \beta$$

Peter B. Denton (BNL)

DPF: July 29, 2019 34/20

First Order Coefficients

$\nu_{\alpha} \rightarrow \nu_{\beta}$	$F_1^{lphaeta}$
$\nu_e \rightarrow \nu_e$	$-2c^3_{\widetilde{13}}s_{\widetilde{13}}s^3_{\widetilde{12}}c_{\widetilde{12}}$
$ u_{\mu} \rightarrow \nu_{e} $	$\begin{array}{c} c_{\widetilde{13}}s_{\widetilde{12}}^2[s_{\widetilde{13}}s_{\widetilde{12}}c_{\widetilde{12}}(c_{23}^2+c_{2\widetilde{13}}s_{23}^2)\\ -s_{23}c_{23}(s_{\widetilde{13}}^2s_{\widetilde{12}}^2+c_{2\widetilde{13}}c_{\widetilde{12}}^2)c_{\delta}]\end{array}$
$ u_{\mu} ightarrow u_{\mu} $	$\frac{2c_{\widetilde{13}}s_{\widetilde{12}}(s_{23}^2s_{\widetilde{13}}c_{\widetilde{12}} + s_{23}c_{23}s_{\widetilde{12}}c_{\delta}) \times}{(c_{23}^2c_{\widetilde{12}}^2 - 2s_{23}c_{23}s_{\widetilde{13}}s_{\widetilde{12}}c_{\widetilde{12}}c_{\delta} + s_{23}^2s_{\widetilde{13}}^2s_{\widetilde{12}}^2)}$

Three channels gives them all with unitarity!

Peter B. Denton (BNL)

DPF: July 29, 2019 35/20

Eigenvalues: Precision

Hamiltonians

After a constant (θ_{23}, δ) rotation, $2E\tilde{H} =$

$$\begin{pmatrix} \widetilde{m^2}_a & s_{13}c_{13}\Delta m_{ee}^2 \\ & \widetilde{m^2}_b & \\ s_{13}c_{13}\Delta m_{ee}^2 & \widetilde{m^2}_c \end{pmatrix} + \epsilon s_{12}c_{12}\Delta m_{ee}^2 \begin{pmatrix} c_{13} & \\ c_{13} & -s_{13} \\ & -s_{13} \end{pmatrix}$$

After a $U_{13}(\tilde{\theta}_{13})$ rotation, $2E\hat{H} =$

$$\begin{pmatrix} \widetilde{m^2}_- & & \\ & \widetilde{m^2}_0 & \\ & & \widetilde{m^2}_+ \end{pmatrix} + \epsilon c_{12} s_{12} \Delta m_{ee}^2 \begin{pmatrix} & c_{(\widetilde{\theta}_{13} - \theta_{13})} & \\ c_{(\widetilde{\theta}_{13} - \theta_{13})} & & s_{(\widetilde{\theta}_{13} - \theta_{13})} \\ & s_{(\widetilde{\theta}_{13} - \theta_{13})} \end{pmatrix}$$

After a $U_{12}(\tilde{\theta}_{12})$ rotation, $2E\check{H} =$

$$\begin{pmatrix} \widetilde{m^2}_1 & & \\ & \widetilde{m^2}_2 & \\ & & \widetilde{m^2}_3 \end{pmatrix} + \epsilon s_{(\widetilde{\theta}_{13} - \theta_{13})} s_{12} c_{12} \Delta m_{ee}^2 \begin{pmatrix} & -s_{\widetilde{12}} \\ & c_{\widetilde{12}} \\ -s_{\widetilde{12}} & c_{\widetilde{12}} \\ & & DPF: \text{ July } 29, \ 2019 \quad 37/24 \end{pmatrix}$$

Perturbative Expansion

Hamiltonian: $\check{H} = \check{H}_0 + \check{H}_1$

$$\check{H}_0 = \frac{1}{2E} \begin{pmatrix} \widetilde{m^2}_1 & & \\ & \widetilde{m^2}_2 & \\ & & \widetilde{m^2}_3 \end{pmatrix}, \quad \check{H}_1 = \epsilon' \frac{\Delta m_{ee}^2}{2E} \begin{pmatrix} & -s_{\widetilde{12}} \\ & & c_{\widetilde{12}} \\ -s_{\widetilde{12}} & c_{\widetilde{12}} \end{pmatrix}$$

Eigenvalues: $\widetilde{m^2}_i^{\text{ex}} = \widetilde{m^2}_i + \widetilde{m^2}_i^{(1)} + \widetilde{m^2}_i^{(2)} + \dots$

$$\widetilde{m_{i}^{2}}_{i}^{(1)} = 2E(\check{H}_{1})_{ii} = 0$$
$$\widetilde{m_{i}^{2}}_{i}^{(2)} = \sum_{k \neq i} \frac{[2E(\check{H}_{1})_{ik}]^{2}}{\Delta \widetilde{m}_{ik}^{2}}$$

Peter B. Denton (BNL)

DPF: July 29, 2019 38/20

Perturbative Expansion: Eigenvectors Use vacuum expressions with $U \rightarrow V$ where

 $V = \widetilde{U}W$

 \widetilde{U} is U with $\theta_{13} \to \widetilde{\theta}_{13}$ and $\theta_{12} \to \widetilde{\theta}_{12}$, $W = W_0 + W_1 + W_2 + \dots$ $W_0 = 1$ $W_1 = \epsilon' \Delta m_{ee}^2 \begin{pmatrix} & -\frac{c_{12}}{\Delta \tilde{m}^2_{31}} \\ & & \frac{c_{12}}{\Delta \tilde{m}^2_{32}} \\ \frac{s_{12}}{\Delta \tilde{m}^2_{32}} & -\frac{c_{12}}{\Delta \tilde{m}^2_{32}} \end{pmatrix}$ $\left[\frac{c_{1\bar{2}}^2}{(\Delta m^2_{32})^2} + \frac{s_{1\bar{2}}^2}{(\Delta m^2_{31})^2}\right]$ The Two Matter Angles

Zeroth Order Coefficients $P_{\alpha\beta} = \delta_{\alpha\beta} + 4C_{21}^{\alpha\beta}\sin^2\Delta_{21} + 4C_{31}^{\alpha\beta}\sin^2\Delta_{31} + 4C_{32}^{\alpha\beta}\sin^2\Delta_{32} + 8D^{\alpha\beta}\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32}$

$$J_r^m \equiv s_{\widetilde{12}} c_{\widetilde{12}} s_{\widetilde{13}} c_{\widetilde{13}}^2 s_{23} c_{23}, \ J_{rr}^m \equiv J_r^m / c_{\widetilde{13}}^2$$

Verifying the CPV Term in Matter

The amount of CPV is

 $J\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32}$

where the Jarlskog is

$$J = 8c_{12}s_{12}c_{13}^2s_{13}c_{23}s_{23}s_{\delta}$$

C. Jarlskog, PRL 55 (1985)

The exact term in matter is known to be

$$\frac{\widehat{J}}{J} = \frac{\Delta m_{21}^2 \Delta m_{31}^2 \Delta m_{32}^2}{\Delta \widehat{m^2}_{21} \Delta \widehat{m^2}_{31} \Delta \widehat{m^2}_{32}}$$

V. Naumov, Int. J. Mod. Phys. 1992

P. Harrison, W. Scott, hep-ph/9912435

Our expression reproduces this order by order in ϵ' for all channels.

Peter B. Denton (BNL)

1604.08167

Angles in Matter

Angles receive corrections at first order:

$$\begin{split} \widetilde{\theta}_{12}^{(1)} &= \epsilon' \Delta m_{ee}^2 s_{\widetilde{12}} c_{\widetilde{12}} \left(\frac{1}{\Delta \widetilde{m^2}_{32}} - \frac{1}{\Delta \widetilde{m^2}_{31}} \right) \\ \widetilde{\theta}_{13}^{(1)} &= -\epsilon' \Delta m_{ee}^2 \frac{s_{\widetilde{13}}}{c_{\widetilde{13}}} \left(\frac{s_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{31}} + \frac{c_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{32}} \right) \\ \widetilde{\theta}_{23}^{(1)} &= \epsilon' \Delta m_{ee}^2 \frac{c_{\delta}}{c_{\widetilde{13}}} \left(\frac{s_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{31}} + \frac{c_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{32}} \right) \\ \widetilde{\delta}^{(1)} &= -\epsilon' \Delta m_{ee}^2 \frac{2c_{2\widetilde{23}}s_{\delta}}{s_{2\widetilde{23}}c_{\widetilde{13}}} \left(\frac{s_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{31}} + \frac{c_{\widetilde{12}}^2}{\Delta \widetilde{m^2}_{32}} \right) \end{split}$$

Second order: see paper

Peter B. Denton (BNL)

DPF: July 29, 2019 43/20

We were not the first to examine this problem.

• Madrid: drop $\frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ and s_{13} terms; ~ |sum of two amplitudes|²

$$P_{\mu e} = 4s_{23}^2 s_{13}^2 c_{13}^2 \left(\frac{\Delta m_{31}^2}{b}\right)^2 \sin^2 \Delta_b + 4c_{23}^2 s_{12}^2 c_{12}^2 \left(\frac{\Delta m_{21}^2}{a}\right)^2 \sin^2 \Delta_a + 8J_r \frac{\Delta m_{21}^2}{a} \frac{\Delta m_{31}^2}{b} \sin \Delta_a \sin \Delta_b \cos \left(\delta + \Delta_{31}\right), \quad b = a - \Delta m_{31}^2 A. Cervera, et al., hep-ph/0002108$$

We were not the first to examine this problem.

• Madrid: drop $\frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ and s_{13} terms; ~ |sum of two amplitudes|²

$$P_{\mu e} = 4s_{23}^2 s_{13}^2 c_{13}^2 \left(\frac{\Delta m_{31}^2}{b}\right)^2 \sin^2 \Delta_b + 4c_{23}^2 s_{12}^2 c_{12}^2 \left(\frac{\Delta m_{21}^2}{a}\right)^2 \sin^2 \Delta_a + 8J_r \frac{\Delta m_{21}^2}{a} \frac{\Delta m_{31}^2}{b} \sin \Delta_a \sin \Delta_b \cos \left(\delta + \Delta_{31}\right), \quad b = a - \Delta m_{31}^2 A. Cervera, et al., hep-ph/0002108$$

E. Akhmedov, et al., ${\tt hep-ph/0402175}$

A. Friedland, C. Lunardini, hep-ph/0606101

H. Nunokawa, S. Parke, J. Valle, 0710.0554

We were not the first to examine this problem.

• Madrid: drop $\frac{\Delta m_{21}^2}{\Delta m_{31}^2}$ and s_{13} terms; \sim |sum of two amplitudes|²

$$\begin{split} P_{\mu e} &= 4s_{23}^2 s_{13}^2 c_{13}^2 \left(\frac{\Delta m_{31}^2}{b}\right)^2 \sin^2 \Delta_b + 4c_{23}^2 s_{12}^2 c_{12}^2 \left(\frac{\Delta m_{21}^2}{a}\right)^2 \sin^2 \Delta_a \\ &+ 8J_r \frac{\Delta m_{21}^2}{a} \frac{\Delta m_{31}^2}{b} \sin \Delta_a \sin \Delta_b \cos \left(\delta + \Delta_{31}\right) , \quad b = a - \Delta m_{31}^2 \\ & \text{A. Cervera, et al., hep-ph/0402175} \\ & \text{E. Akhmedov, et al., hep-ph/0402175} \end{split}$$

A. Friedland, C. Lunardini, hep-ph/0606101

H. Nunokawa, S. Parke, J. Valle, 0710.0554

▶ AKT: from mass basis rotated 12 then 23 converted into 13
 ▶ ∆m²_{ee} appears all over the expressions

S. Agarwalla, Y. Kao, T. Takeuchi, 1302.6773

Peter B. Denton (BNL)

1902.00517

DPF: July 29, 2019 44/20

► AM: Powers of
$$s_{13}^2 \simeq \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$$
 through the 5/2 order
K. Asano, H. Minakata, 1103.4387

Various other expressions

J. Arafune, M. Koike, J. Sato, hep-ph/9703351

M. Freund, hep-ph/0103300

E. Akhmedov, et al., hep-ph/0402175

Others...

Which is best?

Peter B. Denton (BNL)

1902.00517

DPF: July 29, 2019 45/20

► AM: Powers of
$$s_{13}^2 \simeq \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$$
 through the 5/2 order
K. Asano, H. Minakata, 1103.4387

Various other expressions

J. Arafune, M. Koike, J. Sato, hep-ph/9703351

M. Freund, hep-ph/0103300

E. Akhmedov, et al., hep-ph/0402175

Others...

Which is best? What does "best" mean?

Peter B. Denton (BNL)

1902.00517

Comparative Precision (L = 1300 km)

Comparative Precision: At the Peaks

Comparative Precision

Comparative Precision

Peter B. Denton (BNL)

DPF: July 29, 2019 49/20

Speed \approx Simplicity

Proper Expansions

Parameter x is an *expansion parameter* iff

$$\lim_{x \to 0} P_{\text{approx}}(x) = P_{\text{exact}}(x=0)$$

	ϵ	s_{13}	$a/\Delta m_{31}^2$	
Madrid(like)	×	×	X	Cerv
AKT	\checkmark	\checkmark	\checkmark	Agar
MP	\checkmark	×	×	Mina
DMP	\checkmark	\checkmark	\checkmark	PBD
AKS	×	×	×	Araf
MF	\checkmark	×	×	Freu
AJLOS(48)	\checkmark	×	×	Akhr
AM	×	×	×	Asan

Cervera+, hep-ph/0002108 Agarwalla+, 1302.6773 Minakata, Parke, 1505.01826 PBD+, 1604.08167 Arafune+, hep-ph/9703351 Freund, hep-ph/0103300 Akhmedov+, hep-ph/0402175 Asano, Minakata, 1103.4387

$$\epsilon \equiv \frac{\Delta m^2_{21}}{\Delta m^2_{ee}}$$

Comparative Review

- ▶ Many expressions in the literature (12 considered)
- ▶ Most are not at the 1% level
- ▶ Most are not exact in vacuum
- Changing the basis to remove level crossings seems best
 - \blacktriangleright AKT, (MP), DMP
 - Δm_{ee}^2 naturally appears (regardless of the name)
- ▶ The order of rotations matters:
 - Constant 23 rotation, then in matter: 13, 12
- ▶ First order DMP corrections are quite simple