CEvNS with liquid argon scintillation detector(s)
R. Tayloe, Indiana U.
for the COHERENT collaboration

Outline:
• COHERENT at SNS
• CEvNS with LAr
• status/future of LAr detectors for CEvNS

SNS “v-alley”
COHERENT experiment in SNS ν-alley

- Low-background area
- near (20-28 m) SNS target with
- 1.4MW, 5000MWhr/yr, 1.5E23POT/yr,
- pulsed beam (FWHM≈350 ns) at 60Hz

SNS “ν-alley”

SNS ν energy spectrum

SNS ν time distribution

Prompt ν_μ from π decay in time with the proton pulse

Delayed anti-ν_μ, ν_e on μ decay timescale
COHERENT experiment

First detection of CEvNS with CsI!

Cross section (10^{-40} cm2) vs. Neutron number

- Ar
- Na
- Ge
- Cs

without/with nuclear FF

08/19

R. Tayloe, APS DPF 19
COHERENT experiment

- Next goal, demonstrate N^2 dependence of CEvNS
- with CENNS-10 (liquid argon, LAr), currently running…
LAr for CEvNS

Liquid argon (LAr) is:

- Complementary to heavier Cs and I
 - Map out low $N \sigma(CEvNS)$
 - Lower σ but more energetic recoils

- Large scintillation yield
 - 40 photons/keVee

- Quenching factor well-measured

- Pulse Shape Discrimination (PSD) for particle ID!
 - Argon scintillates with 2 time constants
 1. Singlet light: \sim6 ns
 2. Triplet light: \sim1.6 μs
 - Electronic Recoils mostly triplet light
 - Nuclear Recoils mostly singlet light
LAr for CEvNS

Liquid argon (LAr) is:

- Complementary to heavier Cs and I
 - Map out low $N \sigma(\text{CEvNS})$
 - Lower σ but more energetic recoils

- Large scintillation yield
 - 40 photons/keVee

- Quenching factor well-measured

- Pulse Shape Discrimination (PSD) for particle ID!
 - Argon scintillates with 2 time constants
 1. Singlet light: ~ 6 ns
 2. Triplet light: ~ 1.6 µs
 - Electronic Recoils mostly triplet light
 - Nuclear Recoils mostly singlet light
COHERENT LAr: CENNS-10

CENNS-10 detector currently running at SNS

timeline:
• 2012-15: built at Fermilab (J. Yoo et al) for CENNS@Fermilab effort, commissioned/upgraded at Indiana U.

• late 2016: moved to SNS, installed, shielding built

• early 2017: run with TPB-acrylic parts, $E_{\text{thresh}} \sim 80\text{keVnr}$
 “Engineering Run”: 1.8GWhr collected, CEvNS rate low, constrain beam-related bckgrds, analysis finished

• mid-17: upgrade: TPB-Teflon reflectors, new TPB-coated PMTs, added 4” Pb shielding

• mid-17-present: run in upgraded mode, $E_{\text{thresh}} \sim 20\text{keVnr}$
 “Production Run”: 6.1 GWhr collected, blind, 2 parallel, analyses in progress in US and Moscow
The CENNS-10 (LAr) Detector:

Specs:
- 22 kg single-phase LAr fiducial volume
- $2 \times 8''$ PMTs TPB-coated, w/QE=18%@400 nm
- TPB-coated PMTs/teflon side walls
- Energy threshold ≈ 20keVnr
- CAEN 1720 (250MHz, 12-bit) digitizer
- 90W single-stage pulse-tube cold head
- SAES MonoTorr gas purifier for ~ 1 ppm purity
- Pb/Cu/H2O shield
- Expect ≈ 140 CEvNS events/SNS-year
- Running in current configuration since July ‘17
CENNS-10 Analysis for CEvNS:

Analysis Overview:

- Calibrate! Calibrate! Calibrate! with variety of sources

- Characterize expected backgrounds in rate/time/energy
 - Steady-state bkg from beam-off triggers
 - Beam-related neutrons with other neutron detectors and CENNS-10 no-water runs

- Optimize energy/PID/time cuts on signal/noise

- Verify bkg subtraction with ‘pre-beam’ data

- “Open the Box”:
 1. Counting exp’t: prompt and delayed
 2. Full likelihood analysis

SNS neutrino time distribution

Eng. run: steady-state bckgnd rate vs energy
CENNS-10 Analysis for CEvNS:

Analysis Overview:

- Calibrate! Calibrate!, Calibrate! with variety of sources
- Characterize expected backgrounds in rate/time/energy
 - Steady-state bkg from beam-off triggers
 - Beam-related neutrons with other neutron detectors and CENNS-10 no-water runs
- Optimize energy/PID/time cuts on signal/noise
- Verify bkg subtraction with ‘pre-beam’ data
- “Open the Box”:
 1. Counting exp’t: prompt and delayed
 2. Full likelihood analysis

08/19

R. Tayloe, APS DPF 19
CENNS-10 Engineering run results:

blind analysis CENNS-10 Engineering run results:

- event excess in time with beam is consistent with expected prompt beam-related neutron rate
CENNS-10 Engineering run results:

blind analysis CENNS-10 Engineering run results:

- event excess in time with beam is consistent with expected prompt beam-related neutron rate
- no event excess observed in delayed window with 0.5 events expected →
 - limit on delayed neutron backgrounds
 - limit on CEvNS cross section
CENNS-10 Engineering run results:

blind analysis CENNS-10 Engineering run results:

- from full likelihood analysis:
 - cross section limits
 - non-standard interaction constraints

work of
IU PhD Student:
Matthew Heath
\cite{Heath:2019jpj}
corresponding NSI regions

Eng. run CEvNS cross section limits
CENNS-10 Production run:

Production runs, 7/17-now:
- light yield improved to ~4.5 PE/keV
- Particle ID (PSD), energy resolution/threshold sufficient for observation of CEvNS in ^{40}Ar
- SM prediction ~130 CEvNS events in this data set
- analyses in end stages, results soon!

Indiana U, Phd Student: Jacob Zettlemoyer

ITEP/MEPHI (Moscow), Phd Students: Dmitry Rudik, Alex Kumpan.
COHERENT future, next steps

Physics reach of CEvNS:

• Understanding supernovae (SN):
 • Expected to be important in core-collapse SN and
 • possible SN detection channel.

• Nuclear Physics: nuclear form factors

• Standard Model tests, eg: NSI, $\sin^2 \theta_w$, neutrino magnetic moments

• ν oscillations: Investigation of ν_{sterile} oscillations

• reactor monitoring (non-proliferation)

• Dark Matter:
 • Important background for O(10-ton) direct searches
 • detectors sensitive for accelerator produced DM.
COHERENT future, next steps

Physics reach of CEvNS:

- Understanding supernovae (SN):
 - Expected to be important in core-collapse SN and possible SN detection channel.

- Nuclear Physics: nuclear form factors
 - Standard Model tests, e.g.: NSI, $\sin^2 \theta_{\text{ew}}$
 - Neutrino magnetic moments

- Neutrino oscillations: investigation of sterile oscillations

- Reactor monitoring (non-proliferation)

- Dark Matter:
 - Important background for O(10-ton) direct searches
 - Detectors sensitive for accelerator produced DM.
COHERENT future, in ν-alley

- 16kg Ge array, coming soon
- multi-ton NaI, shielding/veto configuration to be finalized
- ton-scale LAr (CENNS-750), funding pending
- D$_2$O for flux normalization
- also NIN cubes
- neutron background measurements
COHERENT future, large LAr detector

CENNS-750:

• Based on our experience with CENNS-10 detector, running since 2017.
• Single-phase LAr (scintillation-only) calorimeter, 750/610 kg total/fiducial
• Purpose-designed cryostat w/LN2 precool, and dual cryocooler for liquefication/gas purification.
• Light collection: TPB coated reflectors combined with 3” PMTs/SiPMs
• Eventual use of underground (low 39Ar) argon.

⇒ 3000 CEvNS, 440 inelastic CC/NC events/yr!
COHERENT future, large LAr detector

CENNS-750:
It fits into \(\nu \)-alley (barely)
CENNS-750 LAr detector

Event rates in 610kg fiducial LAr detector:

~3000 CEvNS events/year

Simulated CEvNS + background rates

~440 inelastic CC/NC events/yr

Estimated inelastic CC/NC CEvNS rates
COHERENT future

Search for accelerator-produced, low-mass, dark matter

Via:

\[p \rightarrow \text{Hg} \rightarrow \pi^0, \pm \]

\[\pi^0 \rightarrow \gamma + V^{(*)} \rightarrow \gamma + \chi^\dagger + \chi \]
COHERENT future
Search for accelerator-produced, low-mass, dark matter

Via:

\[p \rightarrow Hg \rightarrow \pi^0, \pm \]

\[\pi^0 \rightarrow \gamma + V^{(*)} \rightarrow \gamma + \chi^+ + \chi \]
COHERENT future

Search for accelerator-produced, low-mass, dark matter

10-ton LAr or ~2-ton cryogenic NaI detector downstream from high power neutron target, eg SNS

Will enable other CEvNS physics as well!
Summary:

- First measurement of CEvNS in COHERENT CsI[Na] at the SNS!
- More results, demonstrating N^2 dependence, with LAr (and others) coming soon.
- High potential physics output of CEvNS is driving further work on improved/larger detectors
- Thanks to COHERENT collaboration!
Backups
COHERENT future, beyond ν-alley

Sterile oscillation search with large CEvNS detector at SNS