CURRENT STATUS & FUTURE PROSPECTS OF KAMLAND-ZEN

Zhenghao Fu, MIT
On behalf of the KamLAND-Zen Collaboration
7/31/2019
DPF 2019, Northeastern University
NEUTRINOS

- Seesaw Mechanism explain the low mass of neutrinos: Combine Dirac and Majorana masses

\[
\mathcal{L} \sim -\frac{1}{2} \begin{pmatrix} \bar{\nu}_L & \bar{\nu}_R \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & m_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} \Rightarrow m_\nu = \frac{m_D^2}{m_M}, m_N = m_M
\]

- Search for double beta decay

SM process

BSM process
DOUBLE BETA DECAY SPECTRUM

- Schematic view of energy spectrum of $2\nu\beta\beta$ and $0\nu\beta\beta$

- $0\nu\beta\beta$ only creates a mono-energetic peak at the Q-value of the nuclei
MOTIVATION

- Lepton Number Violation explains Leptogenesis
 \(0\nu\beta\beta\)'s introduce Lepton Number Violation
 Explain matter-antimatter asymmetry

- Multiple choices for possible isotopes
 KamLAND is using \(^{136}\text{Xe}^\):
 (1) Noble gas
 (2) High Q-value, \(Q = 2459\) keV
 (3) Centrifugal enrichment possible
 (4) Easy to scale, loaded 3% by weight
KAMLAND-ZEN APPARATUS

- LS mini-balloon is added 90% enriched ^{136}Xe

- Zen-400
 - Period 1: 320kg started at 2012
 - Period 2: 380kg started at 2014

- Zen-800
 - 745 kg started in Jan, 2019
 - Data taking in progress
CURRENT RESULT

- **Zen-400 conclusion:**
 1. No signal for $0v\beta\beta$
 2. Approaching the Inverted Hierarchy region
 3. First experiment to reach (corresponding to 61-165 meV)

 $$T_{1/2}^{0\nu\beta\beta} > 1.07 \times 10^{26} \text{ yrs}$$

- **Zen-800 goal:**
 1. Begin probing the Inverted Hierarchy region
 2. Target sensitivity of 40 meV

PRL117, 082503 (2016)
ANALYSIS OF ZEN-400

- All data of 2νββ & major backgrounds
- Expect 0νββ shown with 90% C.L.
- Significant 110mAg contamination
- Large external background
BACKGROUND SUMMARY

- **Backgrounds in region of interest 2.3 ~ 2.7 MeV**
- **Within 1m-radius spherical volume**

<table>
<thead>
<tr>
<th>Period-1 (270.7 days)</th>
<th>Period-2 (263.8 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>22</td>
</tr>
<tr>
<td>Background</td>
<td>Estimated</td>
</tr>
<tr>
<td>136Xe $2\nu\beta\beta$</td>
<td>-</td>
</tr>
</tbody>
</table>

Residual radioactivity in Xe-LS

214Bi (238U series)	0.23 ± 0.04	0.25	0.028 ± 0.005	0.03
208Tl (232Th series)	-	0.001	-	0.001
110mAg	-	8.5	-	0.0

External (Radioactivity in IB)

214Bi (238U series)	-	2.56	-	2.45
208Tl (232Th series)	-	0.02	-	0.03
110mAg	-	0.003	-	0.002

Spallation products

10C	2.7 ± 0.7	3.3	2.6 ± 0.7	2.8
6He	0.07 ± 0.18	0.08	0.07 ± 0.18	0.08
12B	0.15 ± 0.04	0.16	0.14 ± 0.04	0.15
137Xe	0.5 ± 0.2	0.5	0.5 ± 0.2	0.4

Phys. Rev. Lett. 117 (2016) no.8, 082503
REDUCTION OF 110mAg

- After 1.5 years purification
- 95% reduction of 110mAg
BACKGROUND ^{214}Bi

<table>
<thead>
<tr>
<th></th>
<th>Period-1 (270.7 days)</th>
<th>Period-2 (263.8 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Background</td>
<td>Estimated</td>
<td>Best-fit</td>
</tr>
<tr>
<td>^{136}Xe $2\nu\beta\beta$</td>
<td>-</td>
<td>5.48</td>
</tr>
<tr>
<td>Residual radioactivity in Xe-LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{214}Bi (^{238}U series)</td>
<td>0.23 ± 0.04</td>
<td>0.25</td>
</tr>
<tr>
<td>^{208}Tl (^{232}Th series)</td>
<td>-</td>
<td>0.001</td>
</tr>
<tr>
<td>^{110m}Ag</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>External (Radioactivity in IB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{214}Bi (^{238}U series)</td>
<td>-</td>
<td>2.56</td>
</tr>
<tr>
<td>^{208}Tl (^{232}Th series)</td>
<td>-</td>
<td>0.02</td>
</tr>
<tr>
<td>^{110m}Ag</td>
<td>-</td>
<td>0.003</td>
</tr>
<tr>
<td>Spallation products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>^{10}C</td>
<td>2.7 ± 0.7</td>
<td>3.3</td>
</tr>
<tr>
<td>^6He</td>
<td>0.07 ± 0.18</td>
<td>0.08</td>
</tr>
<tr>
<td>^{12}B</td>
<td>0.15 ± 0.04</td>
<td>0.16</td>
</tr>
<tr>
<td>^{137}Xe</td>
<td>0.5 ± 0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>
CUT 214Bi-214Po Decays

- 214Bi-214Po is vetoed by a delayed coincidence tag. This cut removes $(99.95\pm0.01\%)$ of 214Bi-214Po decays.
- Major background at bottom of balloon
- Zen-800 is bigger and cleaner
Cosmic muons and their spallation products are potential backgrounds

Muon rate \(\sim 0.333 \text{Hz} \)
SPALLATION NEUTRONS

- Spallation Neutrons
 Capture time = 220 μs
 Use coincidence cut to reduce neutrons

- Spectra of the events following muons in
 $150 \leq T < 1000\mu$s
 $4150 \leq T < 5000\mu$s
BACKGROUND 10C

<table>
<thead>
<tr>
<th></th>
<th>Period-1 (270.7 days)</th>
<th>Period-2 (263.8 days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>Background</td>
<td>Estimated</td>
<td>Best-fit</td>
</tr>
<tr>
<td>136Xe $2\nu\beta\beta$</td>
<td>-</td>
<td>5.48</td>
</tr>
<tr>
<td>Residual radioactivity in Xe-LS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214Bi (238U series)</td>
<td>0.23 ± 0.04</td>
<td>0.25</td>
</tr>
<tr>
<td>208Tl (232Th series)</td>
<td>-</td>
<td>0.001</td>
</tr>
<tr>
<td>110mAg</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>External (Radioactivity in IB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>214Bi (238U series)</td>
<td>-</td>
<td>2.56</td>
</tr>
<tr>
<td>208Tl (232Th series)</td>
<td>-</td>
<td>0.02</td>
</tr>
<tr>
<td>110mAg</td>
<td>-</td>
<td>0.003</td>
</tr>
<tr>
<td>Spallation products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10C</td>
<td>2.7 ± 0.7</td>
<td>3.3</td>
</tr>
<tr>
<td>6He</td>
<td>0.07 ± 0.18</td>
<td>0.08</td>
</tr>
<tr>
<td>12B</td>
<td>0.15 ± 0.04</td>
<td>0.16</td>
</tr>
<tr>
<td>137Xe</td>
<td>0.5 ± 0.2</td>
<td>0.5</td>
</tr>
</tbody>
</table>
SPALLATION ISOTOPIES

- Spallation Isotopes
 Major problem 10C, with lifetime $T\sim20s$
 Use machine learning to separate from signal events
 (More details in Aobo’s talk)
FUTURE PLAN - KLZ2

- Winston Cones
- Better PMT & More transparent LS => Light collection resolution 4% to 2%
- New electronics in progress
- Goal: (almost) finish probing the IH region
COLLABORATION

- Japan
 - Tohoku University, RCNS
 - University of Tokyo, Kavli IPMU
 - Osaka University
 - Tokushima University
 - Kyoto University

- US
 - Massachusetts Institute of Technology
 - Boston University
 - University of Washington
 - University of California Berkeley
 - University of Tennessee
 - Triangle University Nuclear Laboratory
 - Virginia Polytechnic Institute
 - Virginia State University
 - University of Hawaii

- Netherland
 - Nikhef, University of Amsterdam

※ Second affiliation is not listed.
Timeline of KamLAND-Zen from 2011 to present

2011
- MIB production
- 400 phase 1
- 320 kg

2012
- LS purification
- Recovery from fire

2013
- LS purification

2014
- 400 phase 2
- 380 kg

2015
- OD refurbishment
- MIB production

2016
- Welding improvement
- MIB production

2017
- MIB production

2018
- LS purification
- Xenon installation

2019
- Zen 800
- 745 kg