The Search for Neutrinoless Double-Beta Decay at SNO+

Meng Luo, for the SNO+ Collaboration 31 July 2019 APS^{1 DMISION OF} APS^{1 DMISION OF}

SNO+ Collaboration

Univ. of Alberta, Laurentian Univ., Queen's Univ., SNOLAB, TRIUMF UC Berkeley/LBNL, Boston Univ., BNL, Univ. of Chicago, UC Davis, Univ. of Pennsylvania Lancaster Univ., Univ. of Liverpool, Univ. of Oxford, QMUL, Univ. of Sussex, King's College London Laboratório de Instrumentação e Física Experimental de Partículas (LIP) Technische Universität Dresden Universidad Nacional Autónoma de México

The SNO+ Experiment A Multi-Purpose Particle Experiment

Adapted from Morgan Askins, DNP 18 and wwwkm.phys.sci.osaka-u.ac.jp

- One experiment, lots of physics
 - Water Phase (2017-18)
 - Nucleon decay (published!)
 - ⁸B solar ν (published!)
 - Reactor anti-*v*
 - Detector calibration
 - Background measurement
 - Scintillator Phase (2019)
 - Low energy solar *v*
 - Geo and reactor anti-v
 - Background measurement
 - Te+scintillator Phase (2020)
 - $0\nu\beta\beta$ search with ¹³⁰Te
 - $t_{1/2}$ measurement of $2\nu\beta\beta$
 - Geo and reactor anti-v
 - Supernova ν in all phases!

Ονββ Decay The Hunt for No Neutrinos

p

Double-Beta Decay

- SM process ($t_{1/2} \sim 10^{21} \text{ yr}$) •
- **Observed from several isotopes** ٠
- Energetically favored over β decay ٠

Neutrinoless Double-Beta Decay

- Non-SM process ($t_{1/2}$ > 10²⁵ yr) •
- Only possible if v is Majorana fermion •

Ονββ Decay The Hunt for No Neutrinos

⁴⁸ Ca	0.187	4.263
$^{76}\mathrm{Ge}$	7.8	2.039
82 Se	9.2	2.998
$^{96}\mathrm{Zr}$	2.8	3.348
$^{100}\mathrm{Mo}$	9.6	3.035
^{116}Cd	7.6	2.813
$^{130}\mathrm{Te}$	34.08	2.527
¹³⁶ Xe	8.9	2.459
¹⁵⁰ Nd	5.6	3.371

 η isotopic abundance (%)

Signal Signature

- Monoenergetic peak at $Q_{\beta\beta}$
- Need good energy resolution
- Need low background level

Choice of Isotope

Isotope

- Two important parameters: η and $Q_{\beta\beta}$
- High $Q_{\beta\beta}$: avoid natural radioactivity
- High η : $0\nu\beta\beta$ decay is extremely rare

 $Q_{\beta\beta}$ [MeV]

The SNO+ Experiment Detector Overview

- Located in SNOLAB, ON, Canada
- ~ 2 km undergroud (~ 6 km.w.e)
- Low cosmic µ⁻ rate (~ 3 / hr)
- Class-2000 clean room
- Reuses SNO detector with some "+'s"
 - Upgraded DAQ and electronics
 - New hold-down ropes
 - New calibration system
 - New scintillator plant
 - New Te purification & synthesis plant

Liquid Scintillator Let there be light!

- High light yield: ~ 10000 photons/MeV ~ 550 PMT hits/MeV
- **Great transparency**: attenuation length ~ 20 m
- Compatibility with acrylic
- α/β pulse shape discrimination
- Low toxicity
- Affordability

Scintillator Phase In Action!

Ονββ Decay at SNO+ Te-Loaded Scintillator

SNO+ Phase I: 0.5% natural Te (1.33 t ¹³⁰Te)

The Cocktail:

• LAB + PPO (2 g/L) + bis-MSB (15 mg/L) + Te-ButaneDiol + DDA

- ~ 4 tons of TeA has been "cooling" underground since 2015.
- TeA purification and TeDiol synthesis plants commissioning now.
- Good optical transparency and light yield: ~ 460 PMT hits/MeV

Key Advantages of SNO+

- High statistics
- Scalability
- No need for enrichment
- Low backgrounds
 - Fiducialization
 - Purification

Backgrounds And Where to Find Them

Internal

- 2νββ
- Solar ⁸B v
- ²³⁸U and ²³²Th-chain
- (α ,n) reaction on ¹³C or ¹⁸O
- Cosmogenics

External

- PMT's
- Acrylic vessel
- Hold-down & hold-up ropes
- Water shielding

Backgrounds And How to Reduce Them

ROI: 2.42 - 2.56 MeV [-0.5σ - 1.5σ] Counts/Year: 9.47 Counts/5y/20keV bin 40 0vββ (100 meV) 2νββ 35 (α, n) U chain Cosmogenic $^{8}B \nu ES$ 30 Th chain External 2νββ 25 ⁸B vES Cosmogenic 20 (α, n) 15 10 External y 5 Internal U chain 92 Internal Th chain 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Reconstructed Energy (MeV)

- ⁸B:
 - Source term measured. Directionality in scintillator?
- Internals:
 - Measurement before Te loading. PSD of BiPo.
- Externals:
 - Measured in water phase. Fiducialization.
- **2v**ββ:
 - Improve light yield for better energy resolution.
- Cosmogenic:
 - Purification, underground "cooling."

- 5 years of Phase I
- Fiducial radius: 3.3 m
- 0vββ decay half-life sensitivity:

 $T_{1/2}^{0\nu} > 2.1 \times 10^{26} \text{ yr } (90\% \text{ C.L.})$

The "Lobster" Plot Probing the mass hierarchy

Summary Take-Home Messages

- SNO+ has finished water phase and published the physics results.
- SNO+ is currently filling with scintillator and will start Te loading next year to search for 0vββ decay.
- SNO+ Phase I will perform a competitive measurement of 0vββ decay with ¹³⁰Te.
- SNO+ Phase II is currently under active R&D for higher sensitivity
 - Higher Te loading (4% ~ 10.6 t ¹³⁰Te)
 - Upgrade PMT array, concentrators
 - Using a balloon vessel

Thank you!

SNO+ Experiment Sudbury, ON, Canada

SNO+ Collaboration

Backup Slides

Future Prospect SNO+ Phase II

Neutrino Mass Bonus from 0vββ Decay Search

• For the $0\nu\beta\beta$ experiments, the observable is $t^{1/2}$. With Fermi's golden rule:

$$[t^{1/2}]^{-1} = G_{0\nu} \left| \mathcal{M} \right|^2 \left| f(m_i, U_{ei}) \right|^2$$
$$f(m_i, U_{ei}) \equiv \frac{m_{\beta\beta}}{m_e}$$

 $m_{\beta\beta}$ is known as the "effective Majorana mass."

$$m_{\beta\beta} = \left| \sum_{i=1,2,3} \mathrm{e}^{i\xi_i} \left| U_{\mathrm{e}i}^2 \right| \, m_i \right|$$

Mass Hierarchy The ordering matters

• The oscillation experiments can only measure Δm^2 .

 $P_{lpha
ightarrow eta, lpha
eq eta} = \sin^2(2 heta) \sin^2igg(rac{\Delta m^2 L}{4E}igg)$

 Up to now, we have only determined the sign of δm²₂₁. Thus, we don't know the ranking of m₃ relative to m_{1.2}

$$egin{bmatrix}
u_e \
u_\mu \
u_ au \
u_ au \end{bmatrix} &= egin{bmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{bmatrix} egin{bmatrix}
u_1 \
u_2 \
u_2 \
u_3 \end{bmatrix} \ m_{etaeta} &= egin{bmatrix} m_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{bmatrix} \ m_{etaeta} &= egin{bmatrix}
u_1 \
u_2 \
u_2 \
u_3 \end{bmatrix} \ m_{etaeta} &= egin{bmatrix}
u_1 \
u_2 \
u_2 \
u_3 \end{bmatrix} \ m_{etaetaeta} &= egin{bmatrix}
u_1 \
u_2 \
u_2 \
u_3 \end{bmatrix} \ m_{etaetaeta} &= egin{bmatrix}
u_1 \
u_2 \
u_2 \
u_3 \end{bmatrix} \ m_{etaetaeta} &= egin{bmatrix}
u_1 \
u_2 \
u_2 \
u_3 \end{bmatrix} \ m_{etaetaeta} &= egin{bmatrix}
u_1 \
u_2 \
u_2 \
u_3 \end{bmatrix} \ m_{etaetaeta} &= egin{bmatrix}
u_1 \
u_2 \
u_2 \
u_3 \end{bmatrix} \ m_{etaetaeta} &= egin{bmatrix}
u_2 \
u_3 \
u_3 \end{bmatrix} \ m_{etaetaeta} &= egin{bmatrix}
u_2 \
u_3 \
u_3$$

