First Measurement of the Neutron Cross Section on Liquid Argon Between 100 and 800 MeV

Sergey Martynenko
Stony Brook University
for the CAPTAIN collaboration

DPF
07-29-19

CAPTAIN: Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos
Outline

• Introduction and motivation
• Experimental setup
• Analysis strategy
• Status and future plans
Outline

- Introduction and motivation
- Experimental setup
- Analysis strategy
- Status and future plans
DUNE: Deep Underground Neutrino Experiment

Goals:
- \(\nu \) oscillation parameters and CP-violation phase;
- \(\nu \) mass Hierarchy;

Facility:
- Neutrinos will be produced at the beam line in Fermilab;
- Large Argon detector will be placed 1300km away from the beam in Sanford lab;
DUNE Energies

- The experiment will measure neutrino interactions with energies more than \(~500\text{MeV}\);

- Small shift in neutrino energy results in big change in neutrino oscillation probability;

- Incoming neutrino energy must be carefully reconstructed.

Neutrino interactions

- Neutrino can’t be seen in the detector by itself. Thus, energy reconstruction comes from kinematics of outcome particles from neutrino interactions.

- Interactions:
 - The dominant charged current process for sub-GeV neutrino interactions(A) is the quasi-elastic mode (CCQE) interaction;
 - Resonant production (B). The W boson excites a Δ resonance of the nucleon, which subsequently decays to a nucleon and a pion;
 - Deep inelastic scattering (DIS) processes (C). It happens for neutrinos of higher energies ($\geq 2.5\text{GeV}$). There is multi-pion production in final state.

- Summary:
 - In the DUNE energy window covers all types of neutrino interactions. Thus, we should understand all of them to perform oscillation analysis. The last two reaction types produce significant number of neutrons in final state.

Sergey Martynenko

Neutrons carry considerable energy that escapes detection, thus provide a significant uncertainty to neutrino energy reconstruction.

Models used to estimate missing energy, including neutrons, have large unconstrained uncertainties.

Different amount of energy carried by neutrinos and antineutrinos.

Neutron-Argon cross section data is only published up to 50 MeV of kinetic energy.

Sergey Martynenko
Neutron cross section on LAr data available

CAPTAIN Physics Program

• CAPTAIN is collaboration with the goal to make measurements relevant for the DUNE experiment

• Medium-energy neutrino physics ~100 MeV to 5 GeV~ (Neutron Beam 50MeV to 800MeV):
 • Measure neutron interactions and event signatures (e.g. pion production) to allow us to constrain number and energy of emitted neutrons in neutrino interactions (at DUNE, mean neutron K.E. from the LBNF beam ~ 400 MeV)
 • Measure higher-energy neutron-induced processes that could be backgrounds to νe appearance e.g. $^{40}\text{Ar}(n,\pi^0)^{40}\text{Ar}^{(*)}$

• Low-energy neutrino physics ~below 100 MeV~ (Neutrino Beam):
 • Measure the neutrino CC and NC cross-sections on Argon in the same energy regime as supernova neutrinos
 • Measure the correlation between true neutrino energy and visible energy for events of supernova-neutrino energies
Outline

• Introduction and motivation
• Experimental setup
• Analysis strategy
• Status and future plans
Mini-CAPTAIN Detector

• 400 kg instrumented hexagonal TPC with 32 cm drift, 50 cm apothem
• ~1000 channels, 3 mm wire pitch
• $21 \times 6 \text{ cm}^2$ PMT light detection system
• Same cold electronics and electronics chain as MicroBooNE
Neutron beam at LANSCE

- Los Alamos Neutron Science Center WNR facility provides a high flux neutron beam with a broad energy spectrum similar to the cosmic-ray spectrum at high altitude;

- Neutron Energy spectrum covers most of neutron energies necessary for DUNE;

- Nominal time structure of the beam: micro pulses (100 ps width) 1.8 μs apart within a 625 μs long macro pulse;

- CAPTAIN special run of 3 micro pulses 200 μs apart per macro pulse.
Tracks from 2017 run

• Full TPC and PDS used in the 2017 Physics Run: July 23 – Aug 05

• Special low intensity run taken on July 31st.

Neutron event from low intensity run

1Sample=500ns
Photon triggers on PDS

Run 07-31-1555_0 Event 16

- Triggering event during our low intensity run
- Each blue line corresponds to a single PMT

Sergey Martynenko
Outline

• Introduction and motivation
• Experimental setup
• Analysis strategy
• Status and future plans
Neutron kinetic energy

• The photon detection system provides an independent measure of neutron kinetic energy for each neutron based on time-of-flight (ToF) measurements;

• TPC and PDS data stored in separate streams and have been matched;

• For every reconstructed track we can assign a kinetic energy for the neutron that created it.
Measuring the neutron cross section

- Survival probability of neutrons decreases exponentially as a function of depth in detector and only depends on cross section and target density;
- Fit an exponential to the starting positions of the tracks to get the cross section;
- Bin data in energy bins based on neutron ToF.

\[I(x) = I_0 e^{-N\sigma x} \]

\(\sigma = \text{Total Cross Section} \)
For Exponential hypothesis to work the signal should be uniform across all the detector

Many dead wires seen upstream of the detector

Only consider tracks in the downstream of the detector
We are considering only using the downstream of the detector to avoid the wire inefficient seen upstream:

- Further studies are under way to understand the effect of this behavior;

- Very short tracks are not reconstructed by our algorithm:
 - Cut tracks shorter than 15 mm;
 - No tracks below 100 MeV.
Cross section fit

For a given energy, the total cross section is proportional to the exponential coefficient of the neutron flux depletion rate for a given topology.

Exponential fits with binning based on ToF

Sergey Martynenko
GEANT4 and FLUKA data was obtained by applying our analysis technique to neutron beam, simulated using each of these packages.
Neutron cross sections

<table>
<thead>
<tr>
<th>Energy range [MeV]</th>
<th>Cross Section [barns]</th>
<th>χ^2/ndof</th>
<th>Number of tracks</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-199</td>
<td>0.49±0.34</td>
<td>1.48/3</td>
<td>264</td>
</tr>
<tr>
<td>199-296</td>
<td>0.88±0.16</td>
<td>11.81/7</td>
<td>536</td>
</tr>
<tr>
<td>296-369</td>
<td>0.89±0.26</td>
<td>4.739/5</td>
<td>329</td>
</tr>
<tr>
<td>369-481</td>
<td>0.94±0.20</td>
<td>8.262/6</td>
<td>413</td>
</tr>
<tr>
<td>481-674</td>
<td>1.20±0.18</td>
<td>5.713/6</td>
<td>624</td>
</tr>
<tr>
<td>674-900</td>
<td>0.83±0.32</td>
<td>0.1323/4</td>
<td>252</td>
</tr>
</tbody>
</table>

- Dominant systematic uncertainty caused by neutron double scattering estimated to be 10%
- Cross section energy-weighted average is 0.91 ± 0.10(stat)±0.09(sys) barns

Sergey Martynenko
Outline

• Introduction and motivation
• Experimental setup
• Analysis strategy
• Status and future plans
Present status: Neutron measurements with Mini-CAPTAIN

• Absolute cross section result paper accepted to PRL;

• Physics analyses ongoing with neutron data taken at WNR summer 2017:
 • Extend Data sample by adding upstream part of the detector;
 • More data exist from regular neutron run (many micro pulses per macro pulse);
 • Calculate differential cross sections for protons and pions.
Summary

• Understanding neutron interactions with Argon is crucial for an accurate reconstruction of neutrino energy.

 • Specially important for the measurements that DUNE wants to do.

• Mini-CAPTAIN collected neutron data in summer 2017;

• Total neutron cross section measurement is obtained.
CAPTAIN collaboration
(several people are missing)

• Picture from the physics run summer 2017 in front of MiniCAPTAIN in the WNR flight path at LANSCE.

Sergey Martynenko
BACKUP
CAPTAIN collaboration

- University of Alabama: Ion Stancu
- LBL: Craig Tull
- BNL: Hucheng Chen, Veljko Radeka, Craig Thorn
- UC Davis: Daine Danielson, Steven Gardiner, Emilja Pantic, Robert Svoboda
- UC Irvine: Jianming Bian, Scott Locke, Michael Smy
- UC Los Angeles: David Cline, Hanguo Wang
- UC San Diego: George Fuller
- University of Hawaii: Jelena Maricic, Marc Rosen, Yujing Sun
- University of Houston: Lisa Whitehead Koerner

- University of New Mexico: Michael Gold, Alexandre Mills, Brad Philipbar
- New Mexico State: Robert Cooper
- University of Pennsylvania: Connor Callahan, Jorge Chaves, Shannon Glavin, Avery Karlin, Christopher Mauger
- SUNY Stony Brook: Neha Dokania, Clark McGrew, Sergey Martynenko, Chiaki Yanagisawa

Sergey Martynenko
Photon Detection System

• Goals of CAPTAIN PDS:
 • Triggering of non-beam events
 • Evaluation of photon timing from prompt Argon scintillation signal to improve event reconstruction
 • Complement TPC to improve the energy resolution measurements
 • Time of flight for neutron run
 • Baseline PDS will provide:
 • 11 pe/MeV in Mini-CAPTAIN
 • 2.2 pe/MeV in CAPTAIN
Photon detectors and electronics

- Hamamatsu R8520-506 MOD
- 1” square
- 25% QE at LAr temperature, special Bialkali LT
- 24 PMTs installed in Mini-CAPTAIN

Digitizer:
- Three CAEN V1720
- Eight channels each, 250 MSamples
- 12-bit digitizer across 2 Vpp
MiniCAPTAIN assembly

Sergey Martynenko
Detector coordinates

U and V wire plane
±60° wrt X plane

Wires on X plane perpendicular to X axis

Beam line
Tracks in Mini-CAPTAIN

• Two-dimensional projection of the detector;

• Green dots are starting points of the tracks and purple dots are ending points;

• Low intensity beam with ~1 neutron every 6 micro pulses;

• Detector is slightly rotated with respect to beam line.
• Simulation predicts at most a change of 10% in the cross section due to multi-track events
Cross section fit

100-199 MeV

199-296 MeV
Cross section fit

296-369 MeV

369-481 MeV
Looking to the future: Neutrino cross sections with CAPTAIN

- An important goal of DUNE is to be able to detect supernova neutrinos.
 - We need to understand what the detector response/efficiency should be.

- CAPTAIN is a fairly sized LArTPC that can provide some insight into these requirements before DUNE is built.
 - Possibly deployed at the Spallation Neutron Source (SNS) at Oak Ridge.

- In addition, the CC/NC cross sections of low energy neutrinos have not been measured in Argon.

- CAPTAIN detector can serve as a testbed for some of the technology needed for a large TPC, but it is also more flexible when it comes to where it can be located.