The Proton Radius Puzzle

Gil Paz

Department of Physics and Astronomy,
Wayne State University,
Detroit, Michigan, USA
Introduction: The proton radius puzzle
Form Factors

Matrix element of EM current between nucleon states give rise to two form factors ($q = p_f - p_i$)

\[
\langle N(p_f)| \sum_q e_q \bar{q} \gamma^\mu q| N(p_i) \rangle = \bar{u}(p_f) \left[\gamma^\mu F_1(q^2) + \frac{i\sigma_{\mu\nu}}{2m} F_2(q^2) q^\nu \right] u(p_i)
\]

Sachs electric and magnetic form factors

\[
G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_p^2} F_2(q^2) \quad \text{and} \quad G_M(q^2) = F_1(q^2) + F_2(q^2)
\]

\[
G_E^p(0) = 1 \quad \text{and} \quad G_M^p(0) = \mu_p \approx 2.793
\]

The slope of G_E^p

\[
\langle r^2 \rangle_E^p = 6 \left. \frac{dG_E^p}{dq^2} \right|_{q^2=0}
\]

determines the charge radius $r_E^p \equiv \sqrt{\langle r^2 \rangle_E^p}$

The proton magnetic radius

\[
\langle r^2 \rangle_M^p = \left. \frac{6}{G_M^p(0)} \frac{dG_M^p(q^2)}{dq^2} \right|_{q^2=0}
\]
The proton radius puzzle

- **Lamb shift in muonic hydrogen** [Pohl et al. *Nature* **466**, 213 (2010)]
 \[r_E^p = 0.84184(67) \text{ fm} \]
 more recently \[r_E^p = 0.84087(39) \text{ fm} \] [Antognini et al. *Science* **339**, 417 (2013)]

The proton radius puzzle

 \[r^p_E = 0.84184(67) \text{ fm} \]
 more recently \[r^p_E = 0.84087(39) \text{ fm} \] [Antognini et al. Science 339, 417 (2013)]

- CODATA value [Mohr et al. RMP 80, 633 (2008)]
 \[r^p_E = 0.87680(690) \text{ fm} \]
 more recently \[r^p_E = 0.87510(610) \text{ fm} \] [Mohr et al. RMP 88, 035009 (2016)]

extracted mainly from (electronic) hydrogen
The proton radius puzzle

Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)]
\[r_E^p = 0.84184(67) \text{ fm} \]
more recently \[r_E^p = 0.84087(39) \text{ fm} \] [Antognini et al. Science 339, 417 (2013)]

CODATA value [Mohr et al. RMP 80, 633 (2008)]
\[r_E^p = 0.87680(690) \text{ fm} \]
more recently \[r_E^p = 0.87510(610) \text{ fm} \] [Mohr et al. RMP 88, 035009 (2016)]

extracted mainly from (electronic) hydrogen

5\(\sigma\) discrepancy!

This is the proton radius puzzle
What could be the reason for the discrepancy?

Spectroscopy
What could be the reason for the discrepancy?

Spectroscopy
- Regular hydrogen spectroscopy
What could be the reason for the discrepancy?

Spectroscopy
- Regular hydrogen spectroscopy
 - Theory: very simple
 - Experiment: new measurements

Scattering
- Electron proton scattering
 - Theory: How to extract r_p from data? (Part 1 of this talk)
 - Experiment: New scattering experiments (e.g. PRad)
- Muon proton scattering
 - Theory: How to relate to spectroscopy? (Part 3 of this talk)
 - Experiment: New experiment called MUSE

New Physics?

Declaimer: I will mostly focus on work I am involved in

Gil Paz (Wayne State University)
What could be the reason for the discrepancy?

Spectroscopy
- Regular hydrogen spectroscopy
 - Theory: very simple
 - Experiment: new measurements
- Muonic hydrogen spectroscopy

Electron-proton scattering
- Theory: How to extract $r_p E$ from data? (Part 1 of this talk)
- Experiment: New scattering experiments (e.g. PRad)

Muon-proton scattering
- Theory: How to relate to spectroscopy? (Part 3 of this talk)
- Experiment: New experiment called MUSE

New Physics?

Gil Paz (Wayne State University)
What could be the reason for the discrepancy?

Spectroscopy
- Regular hydrogen spectroscopy
 - Theory: very simple
 - Experiment: new measurements
- Muonic hydrogen spectroscopy
 - Theory: how well do we know it? (Part 2 of this talk)
 - Experiment: No issues discovered

Scattering
- Electron proton scattering
 - Theory: How to extract r_p from data? (Part 1 of this talk)
 - Experiment: New scattering experiments (e.g. PRad)
- Muon proton scattering
 - Theory: How to relate to spectroscopy? (Part 3 of this talk)
 - Experiment: New experiment called MUSE

New Physics?

Declaimer: I will mostly focus on work I am involved in
What could be the reason for the discrepancy?

Spectroscopy
- Regular hydrogen spectroscopy
 - Theory: very simple
 - Experiment: new measurements
- Muonic hydrogen spectroscopy
 - Theory: how well do we know it? (Part 2 of this talk)
 - Experiment: No issues discovered

Scattering
- Electron proton scattering
 - Theory: How to extract r_p from data? (Part 1 of this talk)
 - Experiment: New scattering experiments (e.g. PRad)
- Muon proton scattering
 - Theory: How to relate to spectroscopy? (Part 3 of this talk)
 - Experiment: New experiment called MUSE

New Physics?

Declaimer: I will mostly focus on work I am involved in
What could be the reason for the discrepancy?

Spectroscopy
- Regular hydrogen spectroscopy
 - Theory: very simple
 - Experiment: new measurements
- Muonic hydrogen spectroscopy
 - Theory: how well do we know it? (Part 2 of this talk)
 - Experiment: No issues discovered

Scattering
- Electron proton scattering
What could be the reason for the discrepancy?

Spectroscopy
- Regular hydrogen spectroscopy
 - Theory: very simple
 - Experiment: new measurements
- Muonic hydrogen spectroscopy
 - Theory: how well do we know it? (Part 2 of this talk)
 - Experiment: No issues discovered

Scattering
- Electron proton scattering
 - Theory: How to extract r_P^E from data? (Part 1 of this talk)
 - Experiment: New scattering experiments (e.g. PRad)
What could be the reason for the discrepancy?

Spectroscopy
- Regular hydrogen spectroscopy
 - Theory: very simple
 - Experiment: new measurements
- Muonic hydrogen spectroscopy
 - Theory: how well do we know it? (Part 2 of this talk)
 - Experiment: No issues discovered

Scattering
- Electron proton scattering
 - Theory: How to extract r_P^E from data? (Part 1 of this talk)
 - Experiment: New scattering experiments (e.g. PRad)
- Muon proton scattering
What could be the reason for the discrepancy?

Spectroscopy
- Regular hydrogen spectroscopy
 - Theory: very simple
 - Experiment: new measurements
- Muonic hydrogen spectroscopy
 - Theory: how well do we know it? (Part 2 of this talk)
 - Experiment: No issues discovered

Scattering
- Electron proton scattering
 - Theory: How to extract r_P^E from data? (Part 1 of this talk)
 - Experiment: New scattering experiments (e.g. PRad)
- Muon proton scattering
 - Theory: How to relate to spectroscopy? (Part 3 of this talk)
 - Experiment: New experiment called MUSE
What could be the reason for the discrepancy?

Spectroscopy
- Regular hydrogen spectroscopy
 - Theory: very simple
 - Experiment: new measurements
- Muonic hydrogen spectroscopy
 - Theory: how well do we know it? (Part 2 of this talk)
 - Experiment: No issues discovered

Scattering
- Electron proton scattering
 - Theory: How to extract r_E^P from data? (Part 1 of this talk)
 - Experiment: New scattering experiments (e.g. PRad)
- Muon proton scattering
 - Theory: How to relate to spectroscopy? (Part 3 of this talk)
 - Experiment: New experiment called MUSE

New Physics?

Declaimer: I will mostly focus on work I am involved in
Outline

- Introduction: The proton radius puzzle
- Part 1: Proton radii from scattering
- Part 2: Hadronic uncertainty in muonic hydrogen theory?
- Part 3: Connecting muon-proton scattering and muonic hydrogen
- Conclusions and outlook
Part 1: Proton radii from scattering
How to extract r_P^E from scattering data?

- The form factors are non-perturbative objects.
How to extract r_E^p from scattering data?

- The form factors are non-perturbative objects.

- **Nobody** knows the exact functional form of G_E^p and G_M^p.
How to extract r_E^p from scattering data?

- The form factors are non-perturbative objects.

- **Nobody** knows the exact functional form of G_E^p and G_M^p.

- Using models (dipole, polynomial, etc.) can bias the extraction of r_E^p.

Gil Paz (Wayne State University)
How to extract r^p_E from scattering data?

- The form factors are non-perturbative objects.

- **Nobody** knows the exact functional form of G^p_E and G^p_M.

- Using models (dipole, polynomial, etc.) can bias the extraction of r^p_E.

- Should use model-independent z-expansion.
How to extract r_E^p from scattering data?

- The form factors are non-perturbative objects.
- **Nobody** knows the exact functional form of G_E^p and G_M^p.
- Using models (dipole, polynomial, etc.) can bias the extraction of r_E^p.
- Should use model-independent z-expansion.
- The method for **meson** form factors, see e.g.
 [Flavor Lattice Averaging Group, EPJ C 74, 2890 (2014)]
How to extract r_E^P from scattering data?

- The form factors are non-perturbative objects.

- Nobody knows the exact functional form of G_E^P and G_M^P.

- Using models (dipole, polynomial, etc.) can bias the extraction of r_E^P.

- Should use model-independent z-expansion.

- The method for meson form factors, see e.g.
 [Flavor Lattice Averaging Group, EPJ C 74, 2890 (2014)]

- First applied to baryon form factors in
 [Hill, GP PRD 82 113005 (2010)]
How to extract r_E^p from scattering data?

- The form factors are non-perturbative objects.
- **Nobody** knows the exact functional form of G_E^P and G_M^p
- Using models (dipole, polynomial, etc.) can bias the extraction of r_E^p
- Should use model-independent z-expansion

The method for **meson** form factors, see e.g.
[Flavor Lattice Averaging Group, EPJ C 74, 2890 (2014)]

First applied to **baryon** form factors in
[Hill, GP PRD 82 113005 (2010)]

Now it is used to extract r_E^p, r_M^p, r_M^n, r_A...
Example 1: r_E^p in PDG 2018

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

\[p \text{ CHARGE RADIUS} \]

<table>
<thead>
<tr>
<th>VALUE (fm)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8751 ± 0.0061</td>
<td>MOHR 16</td>
<td>RVUE</td>
<td>2014 CODATA value</td>
</tr>
<tr>
<td>0.84087 ± 0.00026 ± 0.00029</td>
<td>ANTOGNINI 13</td>
<td>LSR</td>
<td>μ-atom Lamb shift</td>
</tr>
<tr>
<td>0.8335 ± 0.0095</td>
<td>Beyer 17</td>
<td>LSR</td>
<td>2S-4P transition in H</td>
</tr>
<tr>
<td>0.895 ± 0.014 ± 0.014</td>
<td>LEE 15</td>
<td>SPEC</td>
<td>Just 2010 Mainz data</td>
</tr>
<tr>
<td>0.916 ± 0.024</td>
<td>LEE 15</td>
<td>SPEC</td>
<td>World data, no Mainz</td>
</tr>
<tr>
<td>0.8775 ± 0.0051</td>
<td>MOHR 12</td>
<td>RVUE</td>
<td>2010 CODATA, ep data</td>
</tr>
<tr>
<td>0.875 ± 0.008 ± 0.006</td>
<td>ZHAN 11</td>
<td>SPEC</td>
<td>Recoil polarimetry</td>
</tr>
<tr>
<td>0.879 ± 0.005 ± 0.007</td>
<td>BERNAUER 10</td>
<td>SPEC</td>
<td>$ep \rightarrow ep$ form factor reanalyzes old ep data</td>
</tr>
<tr>
<td>0.912 ± 0.009 ± 0.007</td>
<td>BORISYUK 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.871 ± 0.009 ± 0.003</td>
<td>HILL 10</td>
<td>RVUE</td>
<td>2006 CODATA value</td>
</tr>
<tr>
<td>0.84184 ± 0.00036 ± 0.00056</td>
<td>POHL 10</td>
<td>LSR</td>
<td>See ANTOGNINI 13</td>
</tr>
<tr>
<td>0.8768 ± 0.0069</td>
<td>MOHR 08</td>
<td>RVUE</td>
<td>2006 CODATA value</td>
</tr>
<tr>
<td>0.844 ± 0.008</td>
<td>BELUSHKIN 07</td>
<td></td>
<td>Dispersion analysis</td>
</tr>
<tr>
<td>0.897 ± 0.018</td>
<td>BLUNED 05</td>
<td>SICK 03 + 2γ correction</td>
<td></td>
</tr>
<tr>
<td>0.8750 ± 0.0068</td>
<td>MOHR 05</td>
<td>RVUE</td>
<td>2002 CODATA value</td>
</tr>
<tr>
<td>0.895 ± 0.010 ± 0.013</td>
<td>SICK 03</td>
<td></td>
<td>$ep \rightarrow ep$ reanalysis</td>
</tr>
</tbody>
</table>

1 The Beyer 17 result is 3.3 combined standard deviations below the Mohr 16 (2014 CODATA) value. The experiment measures the 2S-4P transition in hydrogen and gets the proton radius and the Rydberg constant.

2 Authors also provide values for combinations of all available data.

[Hill, GP PRD 82 113005 (2010)]
[Lee, Arrington, Hill, PRD 92, 013013 (2015)]
Example 2: r_p^M in PDG 2018

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

\[p \text{ MAGNETIC RADIUS} \]

This is the rms magnetic radius, $\sqrt{\langle r_p^2 \rangle}$.

<table>
<thead>
<tr>
<th>VALUE (fm)</th>
<th>DOCUMENT ID</th>
<th>TECN</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.776±0.034±0.017</td>
<td>1 LEE</td>
<td>SPEC</td>
<td>Just 2010 Mainz data</td>
</tr>
<tr>
<td>0.914±0.035</td>
<td>LEE</td>
<td>15 SPEC</td>
<td>World data, no Mainz</td>
</tr>
<tr>
<td>0.87±0.02</td>
<td>EPSTEIN</td>
<td>14 SPEC</td>
<td>Using $e p$, $e n$, $\pi \pi$ data</td>
</tr>
<tr>
<td>0.867±0.009±0.018</td>
<td>ZHAN</td>
<td>11 SPEC</td>
<td>Recoil polarimetry</td>
</tr>
<tr>
<td>0.777±0.013±0.010</td>
<td>BERNAUER</td>
<td>10 SPEC</td>
<td>$e p \rightarrow e p$ form factor</td>
</tr>
<tr>
<td>0.876±0.010±0.016</td>
<td>BORISYUK</td>
<td>10</td>
<td>Reanalyzes old $e p \rightarrow e p$ data</td>
</tr>
<tr>
<td>0.854±0.005</td>
<td>BELUSHKIN</td>
<td>07</td>
<td>Dispersion analysis</td>
</tr>
</tbody>
</table>

1 Authors also provide values for a combination of all available data.

[Epstein, GP, Roy PRD 90, 074027 (2014)]
[Lee, Arrington, Hill, PRD 92, 013013 (2015)]
Example 3: r_n^M in PDG 2016

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

<table>
<thead>
<tr>
<th>n MAGNETIC RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is the rms magnetic radius, $\sqrt{\langle r_M^2 \rangle}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VALUE (fm)</th>
<th>DOCUMENT ID</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.864$^{+0.009}_{-0.008}$ OUR AVERAGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.89 \pm 0.03</td>
<td>EPSTEIN 14</td>
<td>Using ep, en, $\pi\pi$ data</td>
</tr>
<tr>
<td>0.862$^{+0.009}_{-0.008}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BELUSHKIN 07</td>
<td>Dispersion analysis</td>
<td></td>
</tr>
</tbody>
</table>

[Epstein, GP, Roy PRD 90, 074027 (2014)]
Part 2: Hadronic uncertainty in muonic hydrogen theory?
The bottom line

Scattering:
- World $e - p$ data [Lee, Arrington, Hill ’15]
 \[r_E^P = 0.918 \pm 0.024 \text{ fm} \]
- Mainz $e - p$ data [Lee, Arrington, Hill ’15]
 \[r_E^P = 0.895 \pm 0.020 \text{ fm} \]
- Proton, neutron and π data [Hill, GP ’10]
 \[r_E^P = 0.871 \pm 0.009 \pm 0.002 \pm 0.002 \text{ fm} \]

Muonic hydrogen
- [Pohl et al. Nature 466, 213 (2010)]
 \[r_E^P = 0.84184(67) \text{ fm} \]
- [Antognini et al. Science 339, 417 (2013)]
 \[r_E^P = 0.84087(39) \text{ fm} \]

The bottom line:
using z expansion scattering disfavors muonic hydrogen

Is there a problem with muonic hydrogen theory?
Muonic hydrogen theory

Is there a problem with muonic hydrogen theory?

Potentially yes!

[Hill, GP PRL 107 160402 (2011)]

Muonic hydrogen measures ΔE and translates it to $r_p E$.

$\Delta E = 206.0573(45) - 5.2262(r_p E) + 0.0347(r_p E)^3$ meV

$\Delta E = 206.0336(15) - 5.2275(r_p E) + 0.0332(20)$ meV

Apart from $r_p E$ need two-photon exchange.

Gil Paz (Wayne State University)
Muonic hydrogen theory

- Is there a problem with muonic hydrogen *theory*?

- Potentially yes!

 [Hill, GP PRL 107 160402 (2011)]
Muonic hydrogen theory

- Is there a problem with muonic hydrogen theory?

- Potentially yes!

 [Hill, GP PRL 107 160402 (2011)]

- Muonic hydrogen measures ΔE and translates it to r_E^p

 $\Delta E = 206.0573(45) - 5.2262(r_E^p)^2 + 0.0347(r_E^p)^3$ meV
Muonic hydrogen theory

- Is there a problem with muonic hydrogen theory?

- Potentially yes!
 [Hill, GP PRL 107 160402 (2011)]

- Muonic hydrogen measures ΔE and translates it to r_E^p
 $\Delta E = 206.0573(45) - 5.2262(r_E^p)^2 + 0.0347(r_E^p)^3$ meV
 $\Delta E = 206.0336(15) - 5.2275(10)(r_E^p)^2 + 0.0332(20)$ meV

- Apart from r_E^p need two-photon exchange
Two-photon exchange for the proton

The proton two-photon interaction is given in terms of

\[W^{\mu\nu}(p, q) = i \int d^4x \ e^{iqx} \langle p, s | T \{ J_{\text{e.m.}}^\mu(x) J_{\text{e.m.}}^\nu(0) \} | p, s \rangle \]
Two-photon exchange for the proton

The proton two-photon interaction is given in terms of

$$W^{\mu\nu}(p, q) = i \int d^4x \, e^{iqx} \langle p, s | T \{ J_{\text{e.m.}}^\mu(x) J_{\text{e.m.}}^\nu(0) \} | p, s \rangle$$

Using translation invariance, and strong and EM interaction symmetries: parity and time reversal

$$W^{\mu\nu}(p, q) = \frac{1}{2M} \bar{u}_p(p, s) \left[\left(-g^{\mu\nu} + \frac{q^\mu q^\nu}{q^2} \right) W_1 + \left(p^\mu - \frac{p \cdot q q^\mu}{q^2} \right) \left(p^\nu - \frac{p \cdot q q^\nu}{q^2} \right) W_2
ight.$$

$$\left. + \left([\gamma^\nu, q] p^\mu - [\gamma^\mu, q] p^\nu + [\gamma^\mu, \gamma^\nu] p \cdot q \right) H_1
+ \left([\gamma^\nu, q] q^\mu - [\gamma^\mu, q] q^\nu + [\gamma^\mu, \gamma^\nu] q^2 \right) H_2 \right] u_p(p, s)$$
Two-photon exchange for the proton

The proton two-photon interaction is given in terms of

\[W_{\mu\nu}(p, q) = i \int d^4x e^{iqx} \langle p, s | T \{ J_{e.m.}^\mu(x) J_{e.m.}^\nu(0) \} | p, s \rangle \]

Using translation invariance, and strong and EM interaction symmetries: parity and time reversal

\[W_{\mu\nu}(p, q) = \frac{1}{2M} \bar{u}_p(p, s) \left[\left(-g_{\mu\nu} + \frac{q^\mu q^\nu}{q^2} \right) W_1 + \left(p^\mu - \frac{p \cdot q q^\mu}{q^2} \right) \left(p^\nu - \frac{p \cdot q q^\nu}{q^2} \right) W_2 \right. \]

\[+ \left(\left[\gamma^\nu, q \right] p^\mu - \left[\gamma^\mu, q \right] p^\nu + [\gamma^\mu, \gamma^\nu] p \cdot q \right) H_1 \]

\[+ \left(\left[\gamma^\nu, q \right] q^\mu - \left[\gamma^\mu, q \right] q^\nu + [\gamma^\mu, \gamma^\nu] q^2 \right) H_2 \left] \right. \]

\[\left. u_p(p, s) \right. \]

\[W_1, W_2, H_1, H_2 \text{ depend on the variables } \nu = 2p \cdot q \text{ and } Q^2 = -q^2 \]
Two photon exchange

\[W^{\mu\nu} \] contains huge amount of information

For muonic hydrogen we need mostly spin-independent parts: \(W_1, W_2 \)
Two photon exchange

- $W^{\mu\nu}$ contains huge amount of information
 - For muonic hydrogen we need mostly spin-independent parts: W_1, W_2
- Im W_i is related to data: form factors and structure functions
Two photon exchange

\[W^{\mu\nu} \text{ contains huge amount of information} \]

For muonic hydrogen we need mostly spin-independent parts: \(W_1, W_2 \)

\(\text{Im} \ W_i \text{ is related to data: form factors and structure functions} \)

Reconstruct \(W_i \) from the imaginary part using dispersion relations

\[
W_1(\nu, Q^2) = W_1(0, Q^2) + \frac{\nu^2}{\pi} \int_{\nu_{\text{cut}}(Q^2)^2}^{\infty} d\nu' \frac{\text{Im} W_1(\nu', Q^2)}{\nu'^2(\nu'^2 - \nu^2)}
\]

\[
W_2(\nu, Q^2) = \frac{1}{\pi} \int_{\nu_{\text{cut}}(Q^2)^2}^{\infty} d\nu' \frac{\text{Im} W_2(\nu', Q^2)}{\nu'^2 - \nu^2}
\]
Two photon exchange

- $W^{\mu\nu}$ contains huge amount of information
 For muonic hydrogen we need mostly spin-independent parts: W_1, W_2
- Im W_i is related to data: form factors and structure functions
- Reconstruct W_i from the imaginary part using dispersion relations

$$W_1(\nu, Q^2) = W_1(0, Q^2) + \frac{\nu^2}{\pi} \int_{\nu_{\text{cut}}(Q^2)^2}^{\infty} d\nu' \frac{\text{Im} W_1(\nu', Q^2)}{\nu'^2(\nu'^2 - \nu^2)}$$

$$W_2(\nu, Q^2) = \frac{1}{\pi} \int_{\nu_{\text{cut}}(Q^2)^2}^{\infty} d\nu' \frac{\text{Im} W_2(\nu', Q^2)}{\nu'^2 - \nu^2}$$

- But W_1 requires subtraction... and $W_1(0, Q^2)$ is not well-constrained
$W_1(0, Q^2)$

- $W_1(0, Q^2)$ is calculable for small Q^2 using NRQED
 - The photon sees the proton “almost” like an elementary particle
 - Spin-0 calculated
 - Spin-2 calculated and spin-0 corrected

[Hill, GP, PRL 107 160402 (2011)]
$W_1(0, Q^2)$

- $W_1(0, Q^2)$ is calculable for small Q^2 using NRQED
 The photon sees the proton “almost” like an elementary particle
 [Hill, GP, PRL 107, 160402 (2011)]

- Calculable in *large* Q^2 limit using Operator Product Expansion (OPE)
 The photon “sees” the quarks and gluons inside the proton
\(W_1(0, Q^2) \)

- \(W_1(0, Q^2) \) is calculable for small \(Q^2 \) using NRQED
 The photon sees the proton “almost” like an elementary particle
 [Hill, GP, PRL 107 160402 (2011)]

- Calculable in large \(Q^2 \) limit using Operator Product Expansion (OPE)
 The photon “sees” the quarks and gluons inside the proton
 - Spin-0 calculated in
 [J. C. Collins, NPB 149, 90 (1979)]
$W_1(0, Q^2)$

- $W_1(0, Q^2)$ is calculable for small Q^2 using NRQED
 The photon sees the proton “almost” like an elementary particle
 [Hill, GP, PRL 107 160402 (2011)]

- Calculable in \textit{large} Q^2 limit using Operator Product Expansion (OPE)
 The photon “sees” the quarks and gluons inside the proton
 - Spin-0 calculated in
 [J. C. Collins, NPB 149, 90 (1979)]
 - Spin-2 calculated and spin-0 corrected in
 [Hill, GP PRD 95, 094017 (2017)]
Two Photon Exchange: Modeling

- Simple modeling: use OPE for $Q^2 \geq 1 \text{ GeV}^2$
 - Model unknown Q^4: add $\Delta_L(Q^2) = \pm Q^2/\Lambda_L^2$ with $\Lambda_L \approx 500 \text{ MeV}$
 - Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500 \text{ MeV}$
Two Photon Exchange: Modeling

- Simple modeling: use OPE for $Q^2 \geq 1 \text{ GeV}^2$
 - Model unknown Q^4: add $\Delta_L(Q^2) = \pm Q^2/\Lambda_L^2$ with $\Lambda_L \approx 500 \text{ MeV}$
 - Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500 \text{ MeV}$
- How to connect the curves?
Two Photon Exchange: Modeling

- Simple modeling: use OPE for $Q^2 \geq 1$ GeV2
 - Model unknown Q^4: add $\Delta_L(Q^2) = \pm Q^2/\Lambda_L^2$ with $\Lambda_L \approx 500$ MeV
 - Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV
- Left figure: Interpolating

Caveats: OPE valid for larger Q^2, W different than interpolation
Two Photon Exchange: Modeling

- Simple modeling: use OPE for $Q^2 \geq 1$ GeV2
 - Model unknown Q^4: add $\Delta_L(Q^2) = \pm Q^2/\Lambda_L^2$ with $\Lambda_L \approx 500$ MeV
 - Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV

Left figure: Interpolating
Two Photon Exchange: Modeling

- Simple modeling: use OPE for $Q^2 \geq 1$ GeV2
 - Model unknown Q^4: add $\Delta_L(Q^2) = \pm Q^2/\Lambda_L^2$ with $\Lambda_L \approx 500$ MeV
 - Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV

- Left figure: Interpolating

- Right figure: Energy contribution proportional to area under curve

Gil Paz (Wayne State University)
The Proton Radius Puzzle
Two Photon Exchange: Modeling

- Simple modeling: use OPE for $Q^2 \geq 1\text{ GeV}^2$
 - Model unknown Q^4: add $\Delta_L(Q^2) = \pm Q^2/\Lambda_L^2$ with $\Lambda_L \approx 500\text{ MeV}$
 - Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500\text{ MeV}$

- Left figure: Interpolating

- Right figure: Energy contribution proportional to area under curve
 - Energy contribution: $\delta E(2S)^{W_1(0,Q^2)} \in [-0.046\text{ meV}, -0.021\text{ meV}]$
 - To explain the puzzle need this to be $\sim -0.3\text{ meV}$
Two Photon Exchange: Modeling

- Simple modeling: use OPE for $Q^2 \geq 1$ GeV2
 - Model unknown Q^4: add $\Delta_L(Q^2) = \pm Q^2/\Lambda_L^2$ with $\Lambda_L \approx 500$ MeV
 - Model unknown $1/Q^4$: add $\Delta_H(Q^2) = \pm \Lambda_H^2/Q^2$ with $\Lambda_H \approx 500$ MeV
- Left figure: Interpolating

- Right figure: Energy contribution proportional to area under curve
 - Energy contribution: $\delta E(2S)^{W_1(0,Q^2)} \in [-0.046 \text{ meV}, -0.021 \text{ meV}]$
 - To explain the puzzle need this to be ~ -0.3 meV
 - Caveats: OPE valid for larger Q^2, W_1 different than interpolation
Two Photon Exchange: Other approaches

- Similar results found by other groups

![Graph showing data points with references]

[34] K. Pachucki, PRA 60, 3593 (1999).
[Fig. 8] Hill, GP PRD 95, 094017 (2017).
Experimental test

- How to test?
- New experiment: $\mu - p$ scattering
 MUSE (MUon proton Scattering Experiment) at PSI
 [R. Gilman et al. (MUSE Collaboration), arXiv:1303.2160]

- Need to connect muon-proton scattering and muonic hydrogen
 can use a new effective field theory: QED-NRQED
 [Hill, Lee, GP, Solon, PRD 87 053017 (2013)]
 [Dye, Gonderinger, GP, PRD 94 013006 (2016)]
Part 3: Connecting muon-proton scattering and muonic hydrogen
Muonic hydrogen:
Muon momentum $\sim m_\mu c \alpha \sim 1 \text{ MeV} \ll m_\mu, m_p$
Both proton and muon non-relativistic
Muonic hydrogen:
Muon momentum $\sim m_\mu c \alpha \sim 1$ MeV $\ll m_\mu, m_p$
Both proton and muon non-relativistic

MUSE:
Muon momentum $\sim m_\mu \sim 100$ MeV
Muon is relativistic, proton is still non-relativistic
Muonic hydrogen:
Muon momentum $\sim m_\mu c \alpha \sim 1$ MeV $\ll m_\mu, m_p$
Both proton and muon non-relativistic

MUSE:
Muon momentum $\sim m_\mu \sim 100$ MeV
Muon is relativistic, proton is still non-relativistic

QED-NRQED effective theory:
- Use QED for muon alone
- Use NRQED for proton alone
- Use contact terms for combined muon-proton interaction
 $m_\mu/m_p \sim 0.1$ as expansion parameter

A new effective field theory suggested in
[Hill, Lee, GP, Solon, PRD 87 053017 (2013)]
QED-NRQED Effective Theory

- Example: TPE at the lowest order in $1/m_p$

[Dye, Gonderinger, GP, PRD 94 013006 (2016)]
QED-NRQED Effective Theory

Example: TPE at the lowest order in $1/m_p$
[Dye, Gonderinger, GP, PRD 94 013006 (2016)]

\[d\sigma \frac{d\Omega}{d\theta} = \frac{Z^2 \alpha^2 4E^2}{\bar{q}^4} \left(1 - \nu^2 \sin^2 \frac{\theta}{2}\right) \left[1 + \frac{Z\alpha\pi \nu \sin \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2}\right)}{1 - \nu^2 \sin^2 \theta}\right] \]

$Z = 1$, $E =$ muon energy, $\nu = |\vec{p}|/E$, $q = \vec{p}' - \vec{p}$, θ scattering angle
QED-NRQED Effective Theory

Example: TPE at the lowest order in $1/m_p$

[Dye, Gonderinger, GP, PRD 94 013006 (2016)]

\[\frac{d\sigma}{d\Omega} = \frac{Z^2\alpha^2 4E^2 (1 - v^2 \sin^2 \frac{\theta}{2})}{\bar{q}^4} \left[1 + \frac{Z\alpha\pi v \sin \frac{\theta}{2} (1 - \sin \frac{\theta}{2})}{1 - v^2 \sin^2 \theta} \right] \]

$Z = 1$, $E =$ muon energy, $v = |\vec{p}|/E$, $q = p' - p$, θ scattering angle

Same result as scattering relativistic lepton off static $1/r$ potential

reproduced in [Itzykson, Zuber, “Quantum Field Theory”]

Gil Paz (Wayne State University)
QED-NRQED Effective Theory

- Example: TPE at the lowest order in $1/m_p$
 [Dye, Gonderinger, GP, PRD 94 013006 (2016)]

\[
\frac{d\sigma}{d\Omega} = \frac{Z^2\alpha^2 4E^2 (1 - v^2 \sin^2 \frac{\theta}{2})}{\vec{q}^4} \left[1 + \frac{Z\alpha\pi v \sin \frac{\theta}{2} (1 - \sin \frac{\theta}{2})}{1 - v^2 \sin^2 \theta} \right]
\]

$Z = 1$, $E = \text{muon energy}$, $v = |\vec{p}|/E$, $q = p' - p$, θ scattering angle

- QED-NRQED result

- Same result as scattering relativistic lepton off static $1/r$ potential
 reproduced in [Itzykson, Zuber, “Quantum Field Theory”]

- Same result as $m_p \to \infty$ of “point particle proton” QED scattering
 (For $m_p \to \infty$ only proton charge is relevant)
QED-NRQED Effective Theory beyond $m_p \to \infty$ limit

- QED-NRQED allows to calculate $1/m_p$ corrections

\[
\mathcal{L} = \psi^\dagger \left\{ iD_t + \frac{D^2}{2M} + c_F e \frac{\sigma \cdot B}{2M} + c_D e \frac{\nabla \cdot E}{8M^2} + ic_S e \frac{\sigma \cdot (D \times E - E \times D)}{8M^2} \right\} \psi + \ldots
\]

\[Z = F_1(0), \quad c_F = F_1(0) + F_2(0), \quad c_D = F_1(0) + 2F_2(0) + 8M^2 F_1'(0)\]
QED-NRQED Effective Theory beyond $m_p \to \infty$ limit

- QED-NRQED allows to calculate $1/m_p$ corrections

$$
\mathcal{L} = \psi^\dagger \left\{ iD_t \frac{D^2}{2M} + c_F e \frac{\sigma \cdot B}{2M} + c_D e \frac{\nabla \cdot E}{8M^2} + ic_S e \frac{\sigma \cdot (D \times E - E \times D)}{8M^2} \right\} \psi + \ldots
$$

$$
Z = F_1(0), \quad c_F = F_1(0) + F_2(0), \quad c_D = F_1(0) + 2F_2(0) + 8M^2 F'_1(0)
$$

- Example: one photon exchange $\mu + p \to \mu + p$:

QED-NRQED = $1/m_p$ expansion of form factors

[Dye, Gonderinger, GP, PRD 94 013006 (2016)]
QED-NRQED Effective Theory beyond \(m_p \to \infty \) limit

- QED-NRQED allows to calculate \(1/m_p \) corrections

\[
\mathcal{L} = \psi^\dagger \left\{ i D_t + \frac{D^2}{2M} + c_F e \frac{\sigma \cdot B}{2M} + c_D e \frac{\nabla \cdot E}{8M^2} + ic_S e \frac{\sigma \cdot (D \times E - E \times D)}{8M^2} \right\} \psi + \ldots
\]

\[
Z = F_1(0), \quad c_F = F_1(0) + F_2(0), \quad c_D = F_1(0) + 2F_2(0) + 8M^2F'_1(0)
\]

- Example: one photon exchange \(\mu + p \to \mu + p \):

\[
\begin{align*}
\begin{array}{ccc}
\hline
\text{\(k \)} & \text{\(k' \)} & \text{\(p \)} & \text{\(p' \)} \\
\hline
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ccc}
\hline
\text{\(k \)} & \text{\(k' \)} & \text{\(p \)} & \text{\(p' \)} \\
\hline
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ccc}
\hline
\text{\(k \)} & \text{\(k' \)} & \text{\(p \)} & \text{\(p' \)} \\
\hline
\end{array}
\end{align*}
\]

- QED-NRQED = \(1/m_p \) expansion of form factors

[Dye, Gonderinger, GP, PRD 94 013006 (2016)]

- To connect to muonic hydrogen we need

QED-NRQED contact interactions

QED-NRQED contact interactions

- At $1/M^2$ we have two possible contact interactions

$$\mathcal{L}_{\ell \psi} = \frac{b_1}{M^2} \psi^\dagger \psi \bar{\ell} \gamma^0 \ell + \frac{b_2}{M^2} \psi^\dagger \sigma^i \psi \bar{\ell} \gamma^i \gamma^5 \ell + \mathcal{O}(1/M^3)$$

[Hill, Lee, GP, Solon, PRD 87 053017 (2013)]

- We need to determine the Wilson coefficients b_1 and b_2

- Calculate $\ell + p \rightarrow \ell + p$ off-shell forward scattering at $\mathcal{O}(Z^2\alpha^2)$ and power $1/M^2$ in effective and full theory

Matching in both Feynman and Coulomb gauges

QED-NRQED calculation

Matching calculation: toy example NR point particle

\[\mathcal{L}_{\ell \psi} = \frac{b_1}{M^2} \psi \gamma^0 \ell + \frac{b_2}{M^2} \sigma^i \psi \gamma^i \gamma^5 \ell + O \left(\frac{1}{M^3} \right) \]
Matching calculation: toy example NR point particle

\[\mathcal{L}_{\ell\psi} = \frac{b_1}{M^2} \psi^\dagger \psi \bar{\ell} \gamma^0 \ell + \frac{b_2}{M^2} \psi^\dagger \sigma^i \psi \bar{\ell} \gamma^i \gamma^5 \ell + \mathcal{O} \left(\frac{1}{M^3} \right) \]

- Toy example: non-relativistic point particle

\[b_{1 \cdot p.p.}^p = 0, \quad b_{2 \cdot p.p.}^p = Q_f^2 Z^2 \alpha^2 \left[\frac{16}{3} + \log \left(\frac{M}{2\Lambda} \right) \right] \]

Surprisingly \(b_1 = 0 \) at \(\mathcal{O}(Z^2 \alpha^2) \)
Matching calculation: toy example NR point particle

\[\mathcal{L}_{\ell\psi} = \frac{b_1}{M^2} \bar{\psi} \gamma^0 \ell + \frac{b_2}{M^2} \bar{\psi} \sigma_i \gamma^5 \ell + \mathcal{O}(1/M^3) \]

- Toy example: non-relativistic point particle

\[
 b_{p.p.}^1 = 0, \quad b_{p.p.}^2 = Q_i^2 Z^2 \alpha^2 \left[\frac{16}{3} + \log \left(\frac{M}{2\Lambda} \right) \right]
\]

Surprisingly \(b_1 = 0 \) at \(\mathcal{O}(Z^2 \alpha^2) \)

- What happens for a real proton?
Matching calculation: Real proton

- The IR singularities match QED-NRQED, \(b_1, b_2 \) are determined by

\[
Z^2 \left(\frac{2m\pi}{\lambda^3} - \frac{2m^2\pi}{M\lambda^3} + \frac{2m^3\pi}{M^2\lambda^3} - \frac{5\pi}{4M\lambda} + \frac{3m\pi}{4M^2\lambda} - \frac{2}{3mM} + \frac{4\log(m/\lambda)}{mM} \right) \\
+ c_F^2 \frac{m\pi}{M^2\lambda} - c_D Z \frac{m\pi}{2M^2\lambda} \right] + \frac{b_1(\alpha^2 Q^2)}{M^2} = \\
\frac{2m}{\pi M} \int_0^\infty dQ Q^3 \int_{-1}^1 dx \sqrt{1-x^2} \frac{(1-4x^2)W_1(2iMQx, Q^2) + (1-x^2) M^2 W_2(2iMQx, Q^2)}{(Q^2 + \lambda^2)^2 (Q^2 + 4m^2x^2)}
\]
Matching calculation: Real proton

- The IR singularities match QED-NRQED, \(b_1, b_2 \) are determined by

\[
\left[Z^2 \left(\frac{2m\pi}{\lambda^3} - \frac{2m^2\pi}{M\lambda^3} + \frac{2m^3\pi}{M^2\lambda^3} - \frac{5\pi}{4M\lambda} + \frac{3m\pi}{4M^2\lambda} - \frac{2}{3mM} + \frac{4\log(m/\lambda)}{mM} \right) + \frac{c_F^2 m\pi}{M^2\lambda} - \frac{c_D Z m\pi}{2M^2\lambda} \right] + \frac{b_1(\alpha^2 Q^2)^{-1}}{M^2} =
\]

\[
= \frac{2}{\pi} \frac{m}{M} \int_0^\infty dQ \ Q^3 \int_{-1}^1 dx \sqrt{1 - x^2} \frac{(1 - 4x^2) W_1(2iMQx, Q^2) + (1 - x^2) M^2 W_2(2iMQx, Q^2)}{(Q^2 + \lambda^2)^2 (Q^2 + 4m^2x^2)}
\]

\[
\left[\frac{c_F Z}{3M\lambda} - \frac{2m\pi}{3M^2\lambda} + \frac{2\log(2\Lambda/\lambda)}{M^2} + \frac{\log(2\Lambda/m)}{M^2} - \frac{16}{3M^2} \right] + \frac{c_s Z}{3M^2\lambda} \left(- \frac{\log(m/\lambda)}{M^2} - \frac{3\log(2\Lambda/m)}{2M^2} + \frac{13}{12M^2} \right)\]

\[
+ \frac{b_2(\alpha^2 Q^2)^{-1}}{M^2} = \frac{8}{3\pi} \int_0^\infty dQ \ Q^3 \int_{-1}^1 dx \sqrt{1 - x^2} \frac{1}{(Q^2 + \lambda^2)^2 (Q^2 + 4m^2x^2)} \times
\]

\[
(2Q^2 + x^2 Q^2 + 6m^2x^2) H_1(2iMQx, Q^2) + \left(3ixQ^3 + 2iQxm^2 + 2iQx^3m^2 \right) H_2(2iMQx, Q^2)
\]
Matching calculation: Real proton

\[\mathcal{L}_{\ell\psi} = \frac{b_1}{M^2} \bar{\psi} \gamma^0 \ell + \frac{b_2}{M^2} \bar{\psi} \gamma^i \gamma^5 \ell + O(1/M^3) \]

- Given hadronic tensor can find explicit expression for \(b_1 \) and \(b_2 \)
Matching calculation: Real proton

\[\mathcal{L}_{\ell\psi} = \frac{b_1}{M^2} \psi^\dagger \psi \bar{\ell} \gamma^0 \ell + \frac{b_2}{M^2} \psi^\dagger \sigma^i \psi \bar{\ell} \gamma^i \gamma^5 \ell + \mathcal{O} \left(\frac{1}{M^3} \right) \]

- Given hadronic tensor can find explicit expression for \(b_1 \) and \(b_2 \)
- Full theory contributions to \(b_1 \) and \(b_2 \) from \(F_1(0) \), \(F_2(0) \) and \(M^2 F'_1(0) \)
Matching calculation: Real proton

\[\mathcal{L}_{\ell\psi} = \frac{b_1}{M^2} \psi^\dagger \psi \bar{\ell} \gamma^0 \ell + \frac{b_2}{M^2} \psi^\dagger \sigma^i \psi \bar{\ell} \gamma^i \gamma^5 \ell + \mathcal{O} \left(\frac{1}{M^3} \right) \]

- Given hadronic tensor can find explicit expression for \(b_1 \) and \(b_2 \)
- Full theory contributions to \(b_1 \) and \(b_2 \) from \(F_1(0), F_2(0) \) and \(M^2 F'_1(0) \)

\[b_1(\alpha^2 Q_\ell^2)^{-1} = 0 + \text{possibly non } F_1(0), F_2(0), M^2 F'_1(0) \text{ terms} \]

\[b_2(\alpha^2 Q_\ell^2)^{-1} = F_1(0)^2 \left[\frac{16}{3} + \log \left(\frac{M}{2\Lambda} \right) \right] + F_1(0) F_2(0) \cdot \frac{16}{3} + \]

\[+ \ F_2(0)^2 \left[\frac{17}{24} - \frac{1}{2} \log \left(\frac{M}{2\Lambda} \right) + \frac{3}{2} \log \left(\frac{Q}{M} \right) \right] + \text{non } F_1(0), F_2(0), M^2 F'_1(0) \text{ terms} \]

\(\log(Q/M) \) is a UV divergence regulated when using the full \(F_2 \)
Matching calculation: Real proton

\[\mathcal{L}_{\ell\psi} = \frac{b_1}{M^2} \psi^\dagger \psi \bar{\ell} \gamma^0 \ell + \frac{b_2}{M^2} \psi^\dagger \sigma^i \psi \bar{\ell} \gamma^i \gamma^5 \ell + O \left(\frac{1}{M^3} \right) \]

- Given hadronic tensor can find explicit expression for \(b_1 \) and \(b_2 \)
- Full theory contributions to \(b_1 \) and \(b_2 \) from \(F_1(0), F_2(0) \) and \(M^2 F'_1(0) \)

\[b_1 (\alpha^2 Q^2_\ell)^{-1} = 0 + \text{possibly non } F_1(0), F_2(0), M^2 F'_1(0) \text{ terms} \]

\[b_2 (\alpha^2 Q^2_\ell)^{-1} = F_1(0)^2 \left[\frac{16}{3} + \log \left(\frac{M}{2\Lambda} \right) \right] + F_1(0)F_2(0) \cdot \frac{16}{3} + \]

\[+ F_2(0)^2 \left[\frac{17}{24} - \frac{1}{2} \log \left(\frac{M}{2\Lambda} \right) + \frac{3}{2} \log \left(\frac{Q}{M} \right) \right] \]

\[+ \text{non } F_1(0), F_2(0), M^2 F'_1(0) \text{ terms.} \]

\(\log(Q/M) \) is a UV divergence regulated when using the full \(F_2 \)

- Surprisingly, \textit{again} no contribution to \(b_1 \)
Why is $b_1 = 0$? EFT

- Surprisingly, \textit{again} no contribution to b_1.

Why is \(b_1 = 0 \)? EFT

- Surprisingly, *again* no contribution to \(b_1 \). Why?
- EFT side:

\[
\frac{I_{D,C}^{m,0}}{-i(4\pi)^2} = \int \frac{d^4 l}{(2\pi)^4} \frac{\{m, m - l^0\}}{(l^2 - 2m l^0 + i\epsilon)(l^2 - \lambda^2 + i\epsilon)^2(\pm l^0 - \frac{\vec{l}^2}{2M} + i\epsilon)}
\]
Why is $b_1 = 0$? EFT

- Surprisingly, *again* no contribution to b_1. Why?
- EFT side:

\[
\frac{l_{D,C}^{m,0}}{-i(4\pi)^2} = \int \frac{d^4 l}{(2\pi)^4} \frac{\{m, m - l^0\}}{(l^2 - 2ml^0 + i\epsilon)(l^2 - \lambda^2 + i\epsilon)^2(\pm l^0 - \frac{\vec{l}^2}{2M} + i\epsilon)}
\]

- Usually direct and crossed with even powers of M have opposite signs:

\[
(\pm l^0 - \frac{\vec{l}^2}{2M} + i\epsilon)^{-1} = \pm \frac{1}{l^0} + \frac{\vec{l}^2}{2(l^0)^2M} \pm \frac{(\vec{l}^2)^2}{4(l^0)^3M^2} + \mathcal{O}\left(\frac{1}{M^3}\right)
\]
Why is $b_1 = 0$? EFT

- Surprisingly, again no contribution to b_1. Why?
- EFT side:

$$\frac{I_{D,C}^{m,0}}{-i(4\pi)^2} = \int \frac{d^4 l}{(2\pi)^4} \left\{ m, m - l^0 \right\} \frac{(l^2 - 2ml^0 + i\epsilon)(l^2 - \lambda^2 + i\epsilon)^2(\pm l^0 - \frac{\vec{l}^2}{2M} + i\epsilon)}{4(l^0)^3M^2} + O \left(\frac{1}{M^3} \right)$$

- Usually direct and crossed with even powers of M have opposite signs:

$$\frac{1}{l^0 + \frac{\vec{l}^2}{2M} + i\epsilon} = \pm \frac{1}{l^0} + \frac{\vec{l}^2}{2(l^0)^2M} \pm \frac{(\vec{l}^2)^2}{4(l^0)^3M^2} + O \left(\frac{1}{M^3} \right)$$

- Direct and crossed diagrams usually appear as a sum for spin-independent terms and cancel each other
Why is $b_1 = 0$? Full theory

Surprisingly, *again* no contribution to b_1. Why?
Why is $b_1 = 0$? Full theory

- Surprisingly, *again* no contribution to b_1. Why?
- Full theory side:

\[
\begin{align*}
 i M_{\text{Full}} &= -Q_{\ell}^2 e^4 \int \frac{d^4 l}{(2\pi)^4} \frac{\bar{u}\gamma_\mu(k - l + m)\gamma_\nu u}{(k - l)^2 - m^2} \left(\frac{1}{l^2 - \lambda^2} \right)^2 W^{\mu\nu}(p, l).
\end{align*}
\]

where $k = (m, \vec{0})$
Why is $b_1 = 0$? Full theory

- Surprisingly, *again* no contribution to b_1. Why?
- Full theory side:

\[
\begin{split}
i\mathcal{M}_{\text{Full}} &= -Q_\ell^2 e^4 \int \frac{d^4 l}{(2\pi)^4} \frac{\bar{u}\gamma_\mu (k - l + m)\gamma_\nu u}{(k - l)^2 - m^2} \left(\frac{1}{l^2 - \lambda^2} \right)^2 W^{\mu\nu}(p, l).
\end{split}
\]

where $k = (m, \vec{0})$

- In the limit $m \to 0 \Rightarrow k \to 0$

\[
\begin{split}
i\mathcal{M}_{\text{Full}} \bigg|_{m \to 0} &= -Q_\ell^2 e^4 \int \frac{d^4 l}{(2\pi)^4} \frac{\bar{u}\gamma_\mu (-l)\gamma_\nu u}{l^2} \left(\frac{1}{l^2 - \lambda^2} \right)^2 W^{\mu\nu}(p, l).
\end{split}
\]

- Translation invariance implies $W^{\mu\nu}(p, l) = W^{\nu\mu}(p, -l)$

- Full spin-independent amplitude vanishes for $m \to 0$
The bottom line

\[\mathcal{L}_{\ell\psi} = \frac{b_1}{M^2} \bar{\psi} \gamma^0 \psi \ell + \frac{b_2}{M^2} \bar{\psi} \sigma_i \psi \ell \gamma^i \gamma^5 \ell + \mathcal{O}(1/M^3) \]

- Surprisingly \(b_1 = 0 \) at \(\mathcal{O}(Z^2\alpha^2) \)
The bottom line

$$\mathcal{L}_{\ell \psi} = \frac{b_1}{M^2} \psi^\dagger \psi \bar{\ell} \gamma^0 \ell + \frac{b_2}{M^2} \psi^\dagger \sigma_i \psi \bar{\ell} \gamma^i \gamma^5 \ell + \mathcal{O}(1/M^3)$$

- Surprisingly $b_1 = 0$ at $\mathcal{O}(Z^2 \alpha^2)$

- QED-NRQED scattering is not sensitive to two-photon exchange effects from scales above M at $\mathcal{O}(Z^2 \alpha^2 / M^2)$
The bottom line

\[\mathcal{L}_{\ell\psi} = \frac{b_1}{M^2} \bar{\psi} \gamma^0 \psi \ell \gamma^5 \ell + \frac{b_2}{M^2} \bar{\psi} \gamma^i \sigma^i \psi \ell \gamma^j \gamma^5 \ell + \mathcal{O} \left(\frac{1}{M^3} \right) \]

- Surprisingly, \(b_1 = 0 \) at \(\mathcal{O}(Z^2\alpha^2) \)

- QED-NRQED scattering is not sensitive to two-photon exchange effects from scales above \(M \) at \(\mathcal{O}(Z^2\alpha^2/M^2) \)

- At \(1/M^2 \) the spin-independent interaction depends only on \(c_D \sim \) the proton charge radius

Some explanations involve an unusual behavior of \(W_1(0, Q^2) \) since only asymptotic low and high \(Q^2 \) are known. MUSE experiment is much less sensitive to such effects but extraction of the proton charge radius will be more robust.
The bottom line

\[\mathcal{L}_{\ell \psi} = \frac{b_1}{M^2} \psi^\dagger \psi \ell \gamma^0 \ell + \frac{b_2}{M^2} \psi^\dagger \sigma^i \psi \ell \gamma^i \gamma^5 \ell + \mathcal{O}(1/M^3) \]

- Surprisingly, \(b_1 = 0 \) at \(\mathcal{O}(Z^2 \alpha^2) \)

- QED-NRQED scattering is not sensitive to two-photon exchange effects from scales above \(M \) at \(\mathcal{O}(Z^2 \alpha^2/M^2) \)

- At \(1/M^2 \) the spin-independent interaction depends only on \(c_D \sim \) the proton charge radius

- Some explanations involve an unusual behavior of \(W_1(0, Q^2) \) since only asymptotic low and high \(Q^2 \) are known
The bottom line

\[\mathcal{L}_{\ell\psi} = \frac{b_1}{M^2} \psi^\dagger \psi \bar{\ell} \gamma^0 \ell + \frac{b_2}{M^2} \psi^\dagger \sigma_i \psi \bar{\ell} \gamma^i \gamma^5 \ell + \mathcal{O} \left(\frac{1}{M^3} \right) \]

- Surprisingly \(b_1 = 0 \) at \(\mathcal{O}(Z^2 \alpha^2) \)

- QED-NRQED scattering is not sensitive to two-photon exchange effects from scales above \(M \) at \(\mathcal{O}(Z^2 \alpha^2 / M^2) \)

- At \(1/M^2 \) the spin-independent interaction depends only on \(c_D \sim \) the proton charge radius

- Some explanations involve an unusual behavior of \(W_1(0, Q^2) \) since only asymptotic low and high \(Q^2 \) are known

- MUSE experiment is much less sensitive to such effects but extraction of the proton charge radius will be more robust
Proton radius puzzle: recent developments

- Published October 2017: *New regular hydrogen measurement 2S – 4P Germany*

 [Beyer et al., Science 358, 79 (2017)] \(r_E^p = 0.83(1) \) fm

 Gil Paz (Wayne State University)
Proton radius puzzle: recent developments

- Published October 2017: *New* regular hydrogen measurement $2S - 4P$ Germany

 [Beyer et al., Science 358, 79 (2017)] $r_P^E = 0.83(1)$ fm

- Published May 2018: *New* regular hydrogen measurement $1S - 3S$ France

 [Fleurbaey et al., PRL 120, 183001 (2018)] $r_P^E = 0.88(1)$ fm
Proton radius puzzle: recent developments

- Published October 2017: *New* regular hydrogen measurement $2S - 4P$ Germany
 [Beyer et al., Science 358, 79 (2017)] $r_E^p = 0.83(1)$ fm

- Published May 2018: *New* regular hydrogen measurement $1S - 3S$ France
 [Fleurbaey et al., PRL 120, 183001 (2018)] $r_E^p = 0.88(1)$ fm
Proton radius puzzle: even more recent developments

- July 2018: the 4th proton radius puzzle workshop at Mainz Germany
 [Organizers: Richard J. Hill, GP, Randolf Pohl]

- 1S – 3S Germany
Proton radius puzzle: even more recent developments

- July 2018: the 4th proton radius puzzle workshop at Mainz Germany
 [Organizers: Richard J. Hill, GP, Randolf Pohl]

- 1S – 3S Germany

[Arthur Matveev talk at PRP 2018]
Conclusions
Conclusions

- Proton radius puzzle: $>5\sigma$ discrepancy between
 - r_E^p from muonic hydrogen
 - r_E^p from hydrogen and $e-p$ scattering

- After more than 9 years the origin is still not clear
 1) Is it a problem with the electronic extraction?
 2) Is it a hadronic uncertainty?
 3) Is it new physics?

- Motivates a reevaluation of our understanding of the proton
Conclusions

- Presented three topics:

 1) Extraction of proton radii from scattering: Use the z expansion for form factors. Studies disfavor the muonic hydrogen value.
 2) The first full and correct evaluation of large Q^2 behavior of forward virtual Compton tensor. Can improve the modeling of two photon exchange effects.
 3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED. Surprising result for the spin-independent matching coefficient.

The proton radius puzzle is still puzzling...

Thank you!
Conclusions

Presented three topics:

1) Extraction of proton radii from scattering:
 Use the z expansion for form factors
 Studies disfavor the muonic hydrogen value

Thank you!

Gil Paz (Wayne State University)
The Proton Radius Puzzle
Conclusions

Presented three topics:

1) Extraction of proton radii from scattering:
 Use the z expansion for form factors
 Studies disfavor the muonic hydrogen value

2) The first *full* and *correct* evaluation of
 large Q^2 behavior of forward virtual Compton tensor
 Can improve the modeling of two photon exchange effects
Conclusions

Presented three topics:

1) Extraction of proton radii from scattering:
 Use the z expansion for form factors
 Studies disfavor the muonic hydrogen value

2) The first *full* and *correct* evaluation of large Q^2 behavior of forward virtual Compton tensor
 Can improve the modeling of two photon exchange effects

3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED
 Surprising result for the spin-independent matching coefficient
Conclusions

- Presented three topics:

1) Extraction of proton radii from scattering:
 Use the z expansion for form factors
 Studies disfavor the muonic hydrogen value

2) The first *full* and *correct* evaluation of large Q^2 behavior of forward virtual Compton tensor
 Can improve the modeling of two photon exchange effects

3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED
 Surprising result for the spin-independent matching coefficient

The proton radius puzzle is still puzzling...
Conclusions

Presented three topics:

1) Extraction of proton radii from scattering:
 Use the z expansion for form factors
 Studies disfavor the muonic hydrogen value

2) The first *full* and *correct* evaluation of large Q^2 behavior of forward virtual Compton tensor
 Can improve the modeling of two photon exchange effects

3) Direct connection between muon-proton scattering and muonic hydrogen using a new effective field theory: QED-NRQED
 Surprising result for the spin-independent matching coefficient

 The proton radius puzzle is still puzzling...

Thank you!