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Introduction

I In this talk I will review one of the oldest examples of a
holographic duality, between a string theory in 1+1d and a
matrix quantum mechanics.

I I will compute non-perturbative contributions to closed
string scattering amplitudes.

I This will allow us to propose the exact non-perturbative
quantum dual of c = 1 string theory.



c = 1 Worldsheet CFT

Worldsheet CFT consists of
I Timelike free boson, X0

I c = 25 Liouville CFT, φ

Liouville CFT semiclassical action

SL[φ] =
1

4π

∫
Σ
d2σ

(
(∂aφ)2 + 2Rφ+ µe2φ

)

X0, φ describe a non-linear sigma model, with a 1+1d
target spacetime.
I Ghost CFT, b, c
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Theory is weakly coupled when φ� −1 and strongly
coupled when φ� 1.

An exponential potential ‘cuts off’ the strongly coupled
region.

States in the theory are scattering states.
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c = 1 Worldsheet CFT

Let’s look at the spatial background more closely

SL[φ] =
1

4π

∫
Σ
d2σ

(
(∂aφ)2 + 2Rφ+ µe2φ

)

φ

Weak Coupling Strong Coupling

I Theory is weakly coupled when φ� −1 and strongly
coupled when φ� 1.

I An exponential tachyonic potential ‘cuts off’ the strongly
coupled region.

I States in the theory are scattering states.



c = 1 Worldsheet CFT

c = 25 Liouville CFT:

I Virasoro primaries form a continuous of scalar
operators VP≥0, ∆P = 2 + 2P 2

I 3-point functions on the sphere are given by the DOZZ
formula C(P1, P2, P3)

VP1 VP2

VP3

In/out closed strings:

V±ω = gs : e±iωX
0

: VP=ω
2

Massless!
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c = 1 Worldsheet CFT

1→ 3 scattering amplitude:

V+
ω V−ω1

V−ω2
V−ω3

S(ω → ω1, ω2, ω3) =

∫
d2z

〈
V+
ω (z, z̄)V−ω1

(0)V−ω2
(1)V−ω3

(∞)
〉
S2



c = 1 Worldsheet CFT

I Liouville CFT 4-point function

〈
VP=ω

2
(z, z̄)VP=

ω1
2

(0)VP=
ω2
2

(1)VP=
ω3
2

(∞)
〉
S2,Liouville

P
P

=

=

∫ ∞
0

dP

π
C
(ω

2
,
ω1

2
, P
)
C
(ω2

2
,
ω3

2
, P
)
FP (z)FP (z̄)

Computed numerically!
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Dual Matrix Model

There is a dual description in terms of a suitable N →∞
limit of a U(N) gauged matrix quantum mechanics.

H = Tr

(
1

2
P 2 + V (X)

)
, X ∈ HermN×N

Restrict to U(N) singlet states

X = diag(λ1, ..., λN ), Ψ(X) = Ψ̂(λi)

Ĥ =
N∑
i=1

(
−1

2

∂2

∂λ2
i

+ V (λi)

)
− 1

2

N∑
i 6=j

1

λi − λj
∂

∂λi
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The linear derivative term can be removed by a similarity
transformation

H̃ = ∆Ĥ∆−1 =

N∑
i=1

(
1

2
p2
i + V (λi)

)
, Ψ̃(λi) = ∆(λi)Ψ̂(λi)

∆(λi) =
∏
i<j

(λi − λj)

System of N non-relativistic non-interacting fermions!
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Dual Matrix Model

Consider

V (λ) = −1

2
λ2 + gλ4

with a chemical potential −µ.

−µ

V (λ)

λ
E

Now take the double-scaling limit, g → 0 and N →∞ while
keeping µ fixed.
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Dual Matrix Model

Consider

V (λ) = −1

2
λ2 + gλ4

with a chemical potential −µ.

−µ

V (λ)

λE

In the double-scaling limit, V (λ) = −1
2λ

2 and fermions fill
energy levels up to a Fermi energy −µ!
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Dual Matrix Model

Semiclassical description in phase space

√
2µ

λ

p

Closed strings ↔ Collective excitations of the Fermi density

String coupling gs ↔ 1/(2πµ)



Dual Matrix Model

Fluctuation of the Fermi density is given by a collection of
particle-hole pairs, with total energy ω.

Let Rp(E) and Rh(E) be the reflection phases of a particle
and hole wavefunctions, respectively.

−µ

V (λ)

e−i|E| lnλ

Rp(E)ei|E| lnλ

λE

1→ 1 scattering amplitude: [Moore, Plesser, Ramgoolam
’92]

A(ω → ω) =

∫ ω

0
dxRp(−µ+ ω − x)Rh(−µ− x)
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Dual Matrix Model

A(ω → ω) =

∫ ω

0
dxRp(−µ+ ω − x)Rh(−µ− x)

I Perturbative series in 1/µ↔ string perturbation theory.

I Rp(E), Rh(E) have non-perturbative corrections in
2πµ = 1/gs (tunneling!).

−µ

V (λ)

λE
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Potentials V (λ) that are equal to V (λ) = −1
2λ

2 for λ > 0
give reflection phases Rp(E) and Rh(E) that agree in
perturbation theory, but differ non-perturbatively.

V (λ)

?

What is the quantum state dual to the closed string
vacuum?
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Dual Matrix Model

I Our goal is to understand what is the non-perturbative
dual of c = 1 string theory.

I This requires computing non-perturbative effects on the
worldsheet. [Green, Gutperle ’97]

I We will study closed string scattering in the background of
instanton solutions of c = 1 string theory - ZZ instantons.
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ZZ Instantons

ZZ

VP

Unitary conformal boundary conditions of Liouville theory
on the strip [Fateev, Zamolodchikov2, Teschner ’00;
Zamolodchikov2 ’01]

I FZZT(s) (extended), labelled by a parameter
s ∈ {R

⋃
i [0, 1]}

I ZZ (pointlike)
I Hilbert space on the strip with ZZ boundary condition:

HZZ = V1
I Bulk disk 1-point ΨZZ(P ) is known.
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collective coordinate x0

Generic closed string amplitude in ZZ instanton
background∫

dx0
∑

× ×
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ZZ Instantons

Disconnected empty disc diagrams factor out [Polchinski
’94]

+ · · · = exp
( )

1+ +1
2

( )2

Where

exp
( )

= exp (−SZZ) = e
− 1

gs
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ZZ Instantons

1→ n scattering at order e
− 1

gs

Sinst,(0)(ω1 → ω2, ..., ωn) =

e
− 1

gs

∫ ∞
−∞

dx0
〈
V+

1

〉D2

ZZ,x0

〈
V−2
〉D2

ZZ,x0
...
〈
V−n+1

〉D2

ZZ,x0

×
V+
ω1

V−ω2 ×...×
V−ωn+1

Non-perturbatively there is loss of unitarity.
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2 for all λ
I The closed string vacuum has only states with no

incoming flux from the left occupied.

Not occupied Occupied
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ZZ Instantons

E.g. disk bulk 2-point

∫ 1

0
dy
〈
V+
ω1

(yi)V−ω2
(i)
〉D2

ZZ,x0

The Liouville disk bulk 2-point

1
= ΨZZ

(
ω1
2

)
ΨZZ

(
ω2
2

)
FBdry

∆=0 (∆1,∆2|y)

P
=
∫
dPΨZZ (P )C

(
ω1
2 ,

ω2
2 , P

)
FBulk

∆P
(∆1,∆2|y)
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ZZ Instantons

0.2 0.4 0.6 0.8 1.0
Im(ω)

0.1

0.2

0.3

0.4

A1->1
inst,(1)

Worldsheet
Matrix Model



Summary & Outlook

I We have computed non-perturbative effects to closed string
scattering due to ZZ instantons, and proposed the
non-perturbative matrix model dual.

I It would be interesting to compute scattering amplitudes
including ZZ branes (not ZZ instanton!).

I What is the matrix model dual of FZZT branes?


