ZZ Instantons and the Non-Perturbative Dual of c = 1String Theory

Bruno Balthazar arXiv:1907.07688 with V. A. Rodriguez and X. Yin

Harvard University

July 29, 2019

- In this talk I will review one of the oldest examples of a holographic duality, between a string theory in 1+1d and a matrix quantum mechanics.
- ► I will compute non-perturbative contributions to closed string scattering amplitudes.
- ▶ This will allow us to propose the exact non-perturbative quantum dual of c = 1 string theory.

Worldsheet CFT consists of

▶ Timelike free boson, X^0

Worldsheet CFT consists of

- ▶ Timelike free boson, X^0
- ▶ c = 25 Liouville CFT, ϕ

Liouville CFT semiclassical action

$$S_L[\phi] = \frac{1}{4\pi} \int_{\Sigma} d^2 \sigma \left((\partial_a \phi)^2 + 2R\phi + \mu e^{2\phi} \right)$$

Worldsheet CFT consists of

- ▶ Timelike free boson, X^0
- ▶ c = 25 Liouville CFT, ϕ

Liouville CFT semiclassical action

$$S_L[\phi] = \frac{1}{4\pi} \int_{\Sigma} d^2\sigma \left((\partial_a \phi)^2 + 2R\phi + \mu e^{2\phi} \right)$$

 X^0, ϕ describe a non-linear sigma model, with a 1+1d target spacetime.

Worldsheet CFT consists of

- ▶ Timelike free boson, X^0
- ▶ c = 25 Liouville CFT, ϕ

Liouville CFT semiclassical action

$$S_L[\phi] = \frac{1}{4\pi} \int_{\Sigma} d^2\sigma \left((\partial_a \phi)^2 + 2R\phi + \mu e^{2\phi} \right)$$

 X^0, ϕ describe a non-linear sigma model, with a 1+1d target spacetime.

• Ghost CFT, b, c

Spatial background

$$S_L[\phi] = \frac{1}{4\pi} \int_{\Sigma} d^2 \sigma \left((\partial_a \phi)^2 + 2R\phi + \mu e^{2\phi} \right)$$

 $\rightarrow \phi$

Spatial background

$$S_L[\phi] = \frac{1}{4\pi} \int_{\Sigma} d^2 \sigma \left((\partial_a \phi)^2 + 2R\phi + \mu e^{2\phi} \right)$$

 $\rightarrow \phi$

Weak Coupling Strong Coupling

Theory is weakly coupled when $\phi \ll -1$ and strongly coupled when $\phi \gg 1$.

Spatial background

Theory is weakly coupled when $\phi \ll -1$ and strongly coupled when $\phi \gg 1$. An exponential tachyonic potential 'cuts off' the strongly coupled region.

Let's look at the spatial background more closely

- ▶ Theory is weakly coupled when $\phi \ll -1$ and strongly coupled when $\phi \gg 1$.
- An exponential tachyonic potential 'cuts off' the strongly coupled region.
- States in the theory are scattering states.

c = 25 Liouville CFT:

c = 25 Liouville CFT:

► Virasoro primaries form a continuous of scalar operators $V_{P\geq 0}$, $\Delta_P = 2 + 2P^2$

- c = 25 Liouville CFT:
 - Virasoro primaries form a continuous of scalar operators V_{P≥0}, Δ_P = 2 + 2P²
 - 3-point functions on the sphere are given by the DOZZ formula C(P₁, P₂, P₃)

- c = 25 Liouville CFT:
 - Virasoro primaries form a continuous of scalar operators V_{P≥0}, Δ_P = 2 + 2P²
 - 3-point functions on the sphere are given by the DOZZ formula C(P₁, P₂, P₃)

In/out closed strings:

$$\mathcal{V}^{\pm}_{\omega} = g_s : e^{\pm i\omega X^0} : V_{P=\frac{\omega}{2}}$$

Massless!

 $1 \rightarrow 3$ scattering amplitude:

$$S(\omega \to \omega_1, \omega_2, \omega_3) = \int d^2 z \left\langle \mathcal{V}^+_{\omega}(z, \bar{z}) \mathcal{V}^-_{\omega_1}(0) \mathcal{V}^-_{\omega_2}(1) \mathcal{V}^-_{\omega_3}(\infty) \right\rangle_{S_2}$$

▶ Liouville CFT 4-point function

$$\left\langle V_{P=\frac{\omega}{2}}(z,\bar{z})V_{P=\frac{\omega_1}{2}}(0)V_{P=\frac{\omega_2}{2}}(1)V_{P=\frac{\omega_3}{2}}(\infty)\right\rangle_{S_2,\text{Liouville}}$$

▶ Liouville CFT 4-point function

$$\left\langle V_{P=\frac{\omega}{2}}(z,\bar{z})V_{P=\frac{\omega_1}{2}}(0)V_{P=\frac{\omega_2}{2}}(1)V_{P=\frac{\omega_3}{2}}(\infty)\right\rangle_{S_2,\text{Liouville}}$$

$$= \int_0^\infty \frac{dP}{\pi} C\left(\frac{\omega}{2}, \frac{\omega_1}{2}, P\right) C\left(\frac{\omega_2}{2}, \frac{\omega_3}{2}, P\right) F_P(z) F_P(\bar{z})$$

Computed numerically!

There is a dual description in terms of a suitable $N \to \infty$ limit of a U(N) gauged matrix quantum mechanics.

$$H = \operatorname{Tr}\left(\frac{1}{2}P^2 + V(X)\right), \quad X \in \operatorname{Herm}_{N \times N}$$

There is a dual description in terms of a suitable $N \to \infty$ limit of a U(N) gauged matrix quantum mechanics.

$$H = \operatorname{Tr}\left(\frac{1}{2}P^2 + V(X)\right), \quad X \in \operatorname{Herm}_{N \times N}$$

Restrict to U(N) singlet states

$$X = \operatorname{diag}(\lambda_1, \dots, \lambda_N), \quad \Psi(X) = \hat{\Psi}(\lambda_i)$$
$$\hat{H} = \sum_{i=1}^N \left(-\frac{1}{2} \frac{\partial^2}{\partial \lambda_i^2} + V(\lambda_i) \right) - \frac{1}{2} \sum_{i \neq j}^N \frac{1}{\lambda_i - \lambda_j} \frac{\partial}{\partial \lambda_i}$$

$$\hat{H} = \sum_{i=1}^{N} \left(-\frac{1}{2} \frac{\partial^2}{\partial \lambda_i^2} + V(\lambda_i) \right) - \frac{1}{2} \sum_{i \neq j}^{N} \frac{1}{\lambda_i - \lambda_j} \frac{\partial}{\partial \lambda_i}$$

$$\hat{H} = \sum_{i=1}^{N} \left(-\frac{1}{2} \frac{\partial^2}{\partial \lambda_i^2} + V(\lambda_i) \right) - \frac{1}{2} \sum_{i \neq j}^{N} \frac{1}{\lambda_i - \lambda_j} \frac{\partial}{\partial \lambda_i}$$

The linear derivative term can be removed by a similarity transformation

$$\tilde{H} = \Delta \hat{H} \Delta^{-1} = \sum_{i=1}^{N} \left(\frac{1}{2} p_i^2 + V(\lambda_i) \right), \quad \tilde{\Psi}(\lambda_i) = \Delta(\lambda_i) \hat{\Psi}(\lambda_i)$$
$$\Delta(\lambda_i) = \prod_{i < j} (\lambda_i - \lambda_j)$$

$$\hat{H} = \sum_{i=1}^{N} \left(-\frac{1}{2} \frac{\partial^2}{\partial \lambda_i^2} + V(\lambda_i) \right) - \frac{1}{2} \sum_{i \neq j}^{N} \frac{1}{\lambda_i - \lambda_j} \frac{\partial}{\partial \lambda_i}$$

The linear derivative term can be removed by a similarity transformation

$$\tilde{H} = \Delta \hat{H} \Delta^{-1} = \sum_{i=1}^{N} \left(\frac{1}{2} p_i^2 + V(\lambda_i) \right), \quad \tilde{\Psi}(\lambda_i) = \Delta(\lambda_i) \hat{\Psi}(\lambda_i)$$
$$\Delta(\lambda_i) = \prod_{i < j} (\lambda_i - \lambda_j)$$

System of N non-relativistic non-interacting fermions!

 $\operatorname{Consider}$

$$V(\lambda) = -\frac{1}{2}\lambda^2 + g\lambda^4$$

with a chemical potential $-\mu$.

Consider

$$V(\lambda) = -\frac{1}{2}\lambda^2 + g\lambda^4$$

with a chemical potential $-\mu$.

Now take the double-scaling limit, $g \to 0$ and $N \to \infty$ while keeping μ fixed.

 $\operatorname{Consider}$

$$V(\lambda) = -\frac{1}{2}\lambda^2 + g\lambda^4$$

with a chemical potential $-\mu$.

 $\operatorname{Consider}$

$$V(\lambda) = -\frac{1}{2}\lambda^2 + g\lambda^4$$

with a chemical potential $-\mu$.

In the double-scaling limit, $V(\lambda) = -\frac{1}{2}\lambda^2$ and fermions fill energy levels up to a Fermi energy $-\mu!$ Semiclassical description in phase space

Semiclassical description in phase space

Closed strings \leftrightarrow Collective excitations of the Fermi density

Semiclassical description in phase space

Closed strings \leftrightarrow Collective excitations of the Fermi density String coupling $g_s \leftrightarrow 1/(2\pi\mu)$

Fluctuation of the Fermi density is given by a collection of particle-hole pairs, with total energy ω .

Fluctuation of the Fermi density is given by a collection of particle-hole pairs, with total energy ω .

Let $R_p(E)$ and $R_h(E)$ be the reflection phases of a particle and hole wavefunctions, respectively.

Fluctuation of the Fermi density is given by a collection of particle-hole pairs, with total energy ω .

Let $R_p(E)$ and $R_h(E)$ be the reflection phases of a particle and hole wavefunctions, respectively.

 $1 \rightarrow 1$ scattering amplitude: [Moore, Plesser, Ramgoolam '92]

$$\mathcal{A}(\omega \to \omega) = \int_0^\omega dx R_p(-\mu + \omega - x) R_h(-\mu - x)$$

$$\mathcal{A}(\omega \to \omega) = \int_0^\omega dx R_p(-\mu + \omega - x) R_h(-\mu - x)$$

$$\mathcal{A}(\omega \to \omega) = \int_0^\omega dx R_p(-\mu + \omega - x) R_h(-\mu - x)$$

▶ Perturbative series in $1/\mu \leftrightarrow$ string perturbation theory.

$$\mathcal{A}(\omega \to \omega) = \int_0^\omega dx R_p(-\mu + \omega - x) R_h(-\mu - x)$$

Perturbative series in 1/μ ↔ string perturbation theory.
R_p(E), R_h(E) have non-perturbative corrections in 2πμ = 1/g_s (tunneling!).

Potentials $V(\lambda)$ that are equal to $V(\lambda) = -\frac{1}{2}\lambda^2$ for $\lambda > 0$ give reflection phases $R_p(E)$ and $R_h(E)$ that agree in perturbation theory, but differ *non-perturbatively*.

Potentials $V(\lambda)$ that are equal to $V(\lambda) = -\frac{1}{2}\lambda^2$ for $\lambda > 0$ give reflection phases $R_p(E)$ and $R_h(E)$ that agree in perturbation theory, but differ *non-perturbatively*.

What is the quantum state dual to the closed string vacuum?

- Our goal is to understand what is the non-perturbative dual of c = 1 string theory.
- This requires computing non-perturbative effects on the worldsheet. [Green, Gutperle '97]

- Our goal is to understand what is the non-perturbative dual of c = 1 string theory.
- This requires computing non-perturbative effects on the worldsheet. [Green, Gutperle '97]
- We will study closed string scattering in the background of instanton solutions of c = 1 string theory ZZ instantons.

Unitary conformal boundary conditions of Liouville theory on the strip [Fateev, Zamolodchikov², Teschner '00; Zamolodchikov² '01]

Unitary conformal boundary conditions of Liouville theory on the strip [Fateev, Zamolodchikov², Teschner '00; Zamolodchikov² '01]

▶ FZZT(s) (extended), labelled by a parameter $s \in \{\mathbb{R} \bigcup i [0, 1]\}$

Unitary conformal boundary conditions of Liouville theory on the strip [Fateev, Zamolodchikov², Teschner '00; Zamolodchikov² '01]

- ▶ FZZT(s) (extended), labelled by a parameter $s \in \{\mathbb{R} \bigcup i [0, 1]\}$
- ► ZZ (pointlike);

Unitary conformal boundary conditions of Liouville theory on the strip [Fateev, Zamolodchikov², Teschner '00; Zamolodchikov² '01]

FZZT(s) (extended), labelled by a parameter $s \in \{\mathbb{R} \bigcup i [0, 1]\}$

Unitary conformal boundary conditions of Liouville theory on the strip [Fateev, Zamolodchikov², Teschner '00; Zamolodchikov² '01]

FZZT(s) (extended), labelled by a parameter $s \in \{\mathbb{R} \bigcup i [0, 1]\}$

► ZZ (pointlike)

▶ Hilbert space on the strip with ZZ boundary condition:

$$\mathcal{H}_{ZZ}=\mathcal{V}_{1\!\!1}$$

Unitary conformal boundary conditions of Liouville theory on the strip [Fateev, Zamolodchikov², Teschner '00; Zamolodchikov² '01]

FZZT(s) (extended), labelled by a parameter s ∈ {ℝ∪i[0,1]}
ZZ (pointlike)

▶ Hilbert space on the strip with ZZ boundary condition:

$$\mathcal{H}_{ZZ}=\mathcal{V}_{1\!\!1}$$

► Bulk disk 1-point $\Psi_{ZZ}(P)$ is known.

ZZ instanton boundary conditions

- ▶ ZZ boundary condition in Liouville
- ▶ Dirichlet boundary condition in X^0 , labelled by collective coordinate x^0

ZZ instanton boundary conditions

- ▶ ZZ boundary condition in Liouville
- ▶ Dirichlet boundary condition in X^0 , labelled by collective coordinate x^0

Generic closed string amplitude in ZZ instanton background

Disconnected empty disc diagrams factor out [Polchinski '94]

$$1 + \bigcirc +\frac{1}{2} (\bigcirc)^2 + \dots = \exp(\bigcirc)$$

Disconnected empty disc diagrams factor out [Polchinski '94]

$$1 + \left(\right) + \frac{1}{2} \left(\right)^2 + \dots = \exp(0)$$

Where

$$\exp\left(\bigcirc\right) = \exp\left(-S_{\rm ZZ}\right) = e^{-\frac{1}{g_s}}$$

 $1 \rightarrow n$ scattering at order $e^{-\frac{1}{g_s}}$

$$S^{\text{inst},(0)}(\omega_1 \to \omega_2, ..., \omega_n) = e^{-\frac{1}{g_s}} \int_{-\infty}^{\infty} dx^0 \left\langle \mathcal{V}_1^+ \right\rangle_{ZZ,x^0}^{D^2} \left\langle \mathcal{V}_2^- \right\rangle_{ZZ,x^0}^{D^2} ... \left\langle \mathcal{V}_{n+1}^- \right\rangle_{ZZ,x^0}^{D^2}$$

 $1 \rightarrow n$ scattering at order $e^{-\frac{1}{g_s}}$

$$S^{\text{inst},(0)}(\omega_1 \to \omega_2, ..., \omega_n) = e^{-\frac{1}{g_s}} \int_{-\infty}^{\infty} dx^0 \left\langle \mathcal{V}_1^+ \right\rangle_{ZZ,x^0}^{D^2} \left\langle \mathcal{V}_2^- \right\rangle_{ZZ,x^0}^{D^2} ... \left\langle \mathcal{V}_{n+1}^- \right\rangle_{ZZ,x^0}^{D^2}$$

 $1 \rightarrow n$ scattering at order $e^{-\frac{1}{g_s}}$

$$S^{\text{inst},(0)}(\omega_1 \to \omega_2, ..., \omega_n) = e^{-\frac{1}{g_s}} \int_{-\infty}^{\infty} dx^0 \left\langle \mathcal{V}_1^+ \right\rangle_{ZZ,x^0}^{D^2} \left\langle \mathcal{V}_2^- \right\rangle_{ZZ,x^0}^{D^2} ... \left\langle \mathcal{V}_{n+1}^- \right\rangle_{ZZ,x^0}^{D^2}$$

Non-perturbatively there is loss of unitarity.

Non-perturbative dual matrix model:

Non-perturbative dual matrix model:

•
$$V(\lambda) = -\frac{\lambda^2}{2}$$
 for all λ

Non-perturbative dual matrix model:

•
$$V(\lambda) = -\frac{\lambda^2}{2}$$
 for all λ

The closed string vacuum has only states with no incoming flux from the left occupied.

 $1 \rightarrow 1$ scattering at order $e^{-\frac{1}{g_s}}g_s$

 $1 \rightarrow 1$ scattering at order $e^{-\frac{1}{g_s}}g_s$

$$S^{\text{inst},(1)}(\omega_1 \to \omega_2) = e^{-\frac{1}{g_s}} \int_{-\infty}^{\infty} dx^0 \left(\langle \mathcal{V}_1 \mathcal{V}_2 \rangle_{ZZ,x^0}^{D^2} + \langle \mathcal{V}_1 \rangle_{ZZ,x^0}^{D^2} \langle \mathcal{V}_2 \rangle_{ZZ,x^0}^{A^2} + \langle \mathcal{V}_2 \rangle_{ZZ,x^0}^{D^2} \langle \mathcal{V}_1 \rangle_{ZZ,x^0}^{A^2} \right)$$

 $1 \rightarrow 1$ scattering at order $e^{-\frac{1}{g_s}}g_s$

$$S^{\text{inst},(1)}(\omega_1 \to \omega_2) = e^{-\frac{1}{g_s}} \int_{-\infty}^{\infty} dx^0 \left(\langle \mathcal{V}_1 \mathcal{V}_2 \rangle_{ZZ,x^0}^{D^2} + \langle \mathcal{V}_1 \rangle_{ZZ,x^0}^{D^2} \langle \mathcal{V}_2 \rangle_{ZZ,x^0}^{A^2} + \langle \mathcal{V}_2 \rangle_{ZZ,x^0}^{D^2} \langle \mathcal{V}_1 \rangle_{ZZ,x^0}^{A^2} \right)$$

E.g. disk bulk 2-point

$$\int_0^1 dy \left\langle \mathcal{V}_{\omega_1}^+(yi)\mathcal{V}_{\omega_2}^-(i) \right\rangle_{\mathrm{ZZ},x^0}^{D^2}$$

E.g. disk bulk 2-point

$$\int_0^1 dy \left\langle \mathcal{V}_{\omega_1}^+(yi)\mathcal{V}_{\omega_2}^-(i) \right\rangle_{\mathrm{ZZ},x^0}^{D^2}$$

The Liouville disk bulk 2-point

$$\begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ = \Psi_{\text{ZZ}} \left(\frac{\omega_1}{2} \right) \Psi_{\text{ZZ}} \left(\frac{\omega_2}{2} \right) F_{\Delta=0}^{\text{Bdry}} \left(\Delta_1, \Delta_2 | y \right) \end{array}$$

E.g. disk bulk 2-point

$$\int_0^1 dy \left\langle \mathcal{V}_{\omega_1}^+(yi)\mathcal{V}_{\omega_2}^-(i) \right\rangle_{\mathrm{ZZ},x^0}^{D^2}$$

The Liouville disk bulk 2-point

$$\begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ = \Psi_{\text{ZZ}} \left(\frac{\omega_1}{2} \right) \Psi_{\text{ZZ}} \left(\frac{\omega_2}{2} \right) F_{\Delta=0}^{\text{Bdry}} \left(\Delta_1, \Delta_2 | y \right) \end{array}$$

$$\begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} = \int dP \Psi_{\text{ZZ}}\left(P\right) C\left(\frac{\omega_1}{2}, \frac{\omega_2}{2}, P\right) F_{\Delta_P}^{\text{Bulk}}\left(\Delta_1, \Delta_2 | y\right)$$

Worldsheet Matrix Model

- We have computed non-perturbative effects to closed string scattering due to ZZ instantons, and proposed the non-perturbative matrix model dual.
- It would be interesting to compute scattering amplitudes including ZZ branes (not ZZ instanton!).
- ▶ What is the matrix model dual of FZZT branes?