Due to technical problems on the CERN SSO system, logging in is currently failing for many users. Details on the SSB
July 29, 2019 to August 2, 2019
Northeastern University
US/Eastern timezone

Contact Geometry and Quantum Mechanics

Jul 29, 2019, 2:00 PM
West Village G 106 (Northeastern University)

West Village G 106

Northeastern University

Oral Presentation Field & String Theory Field & String Theory


Prof. Andrew Waldron (Department of Mathematics and QMAP, University of California Davis,)


Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems—just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions.

Primary authors

Prof. Andrew Waldron (Department of Mathematics and QMAP, University of California Davis,) Dr Gabriel Herczeg (Brown University)

Presentation materials