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Plan

1. In dimensional reduction of gauge and/or gravity theories:

what are compensator fields?

why do we need them?

— explained nicely by Douglas & Torroba (hep-th/0805.3700).

2. What about compactification without truncation, retaining the
full KK tower:

do we still introduce compensators “by hand?”

or are they “already there?”

Motivation: very little literature on KK without truncation, despite naive
expectation that this would have been extensively studied long ago.

We’ll stick to U(1) gauge theory in this talk for simplicity.
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Naive dimensional reduction

Dim reduction = compactification truncated to zero modes

Consider D-dim U(1) gauge theory

S =

∫
dDx
√
−gD

(
−1

4
FMNFMN

)
compactified on YD−d , and let AM = (Aµ,Am).

Gauge theory on YD−d alone has EOM 0 = ∇m
YFmn with physical soln

space Am = Am(u; y) parametrized by uI .

In dim red theory, promote uI to d-dim fields uI (x), and set
AM =

(
Aµ(x),Am((u(x); y)

)
in D-dim action. Then,

Sdim red =

∫
ddx
√
−gd

(
−1

4
FµνFµν + GIJ∂

µuI∂νu
J),

where GIJ(u) =
∫
Y dD−dy

√
gD−dg

mn∂IAm∂JAn.

Problem: GIJ(u) is not inv under Am(u; y)→ Am(u; y) + ∂mv(y).
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Consistent dimensional reduction with compensators

Resolution. The correct moduli space metric is

GIJ(u) =

∫
Y
dD−dy

√
gD−dg

mnδIAmδJAn,

where
δIAm(u; y) = ∂IAm(u; y)− ΩIm(u; y)

is gauge-invariant and satisfies

∇m
YδIAm(u; y) = 0 (harmonic gauge condition).

The compensator ΩIm(u; y) projects out the gauge-variant part of ∂IAm

leaving a harmonic result independent of gauge choice.

From the perspective of the dimensionally reduced theory, the
compensator ΩIm(u; y) is a non-dynamical Lagrange multiplier.
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Geometry of the full space of gauge connections

Let A denote the full space of connections Am(y) on Y (distinguishing
different gauge choices).

A is a fiber bundle with
fiber G — the space of gauge transformations,
base A/G — the physical space of gauge connections mod gauge transfs.

Convenient to parametrize with
base coords uI parametrizing a fiducial rep Am(u; y) of each gauge orbit,
fiber coords v` parametrizing other reps Am(u, v ; y) = Am(u; y) + ∂mv(y),

where we expand v(y) = v`Y`(y) in Laplace eigenfns ∇2
YY` = −m`2Y`.

Let Λ = (I , `). Then, the metric GΛΛ′ =
∫
Y dD−dy

√
gD−dg

mn∂ΛAm∂Λ′An

on the full space of connections is also of fiber bundle form

ds2
A = GIJ(u)duIduJ + G``′

(
dv ` + Ω`Idu

I )
(
dv `
′

+ Ω`
′
Jdu

J).

The compensator Ω`I is simply the connection on the fiber bundle A.
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Geometry of the full space of gauge connections (cont’d)

In
ds2
A = GIJ(u)duIduJ + G``′

(
dv ` + Ω`Idu

I )
(
dv `
′

+ Ω`
′
Jdu

J).

we have

G``′ =

∫
Y
dD−dy

√
gD−dg

mn∂mY`∂nY`′ = m`
2δ``′ (no sum),

m`
2Ω`I =

∫
Y
dD−dy

√
gD−dg

mn∂IAm∂nY`,

GIJ + G``′Ω
`
I Ω
`′

J =

∫
Y
dD−dy

√
gD−dg

mn∂IAm∂JAn,

where ∇2
YY` = −m`

2Y`.

So, the metric ds2
A on the space A of gauge connections (including the

compensator Ω) is determined, given a metric on Y and coordinate chart
uI , v ` on A.

In this context, the compensator is “already there” and does not need to be
introduced “by hand.”
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Compactification without truncation

For compactification of D-dimensional U(1) gauge theory on a compact manifold Y
without trunction, we promote uI , v` of the last slide to fields uI (x), v`(x) and write
AM(x , y) = (Aµ,Am) =

(
A`µ(x)Y`(y),Am(u(x), v(x); y)

)
. Then,

S =

∫
dDx
√
−gD

(
−

1

4
FMNFMN

)
=

∫
ddx
√
−gd

(
Lgauge + Lcharged scalar + Lneutral scalar

)
,

where

Lgauge =
∑
`

(
−

1

4
F `µνF `µν

)
,

Lcharged scalar = −
1

2

∑
` 6=0

m`
2Dµv`(x)Dµv

`(x),

Lneutral scalar = −
1

2
GIJ (u)∂µuI (x)∂µu

J (x)− V
(
u(x)

)
,

with

Dµv
` = ∂µv

` − Ω` I∂µu
I + A`µ and V (u) =

∫
Y
dD−dy

√
gD−d

1

4
Fmn(u; y)Fmn(u; y).

For ` 6= 0, the vector A`µ(x) eats ∂µv`(x)− Ω`I∂µu
I to become massive.

The scalars uI deforming away from flat Fmn(u) = 0 are massive due to V (u).
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Low energy EFT below compactification scale

The low energy effective field theory below the compactification scale is
exactly of the dim red form discussed earlier,

LEFT = −1

4
F 0µνF 0

µν − G flat
IJ (u)∂µuI∂µu

J ,

where in the first term only ` = 0 contributes, and in the second term “flat”
denotes the restriction to flat deformations uI with Fmn(u) = 0.
Here, as above,

GIJ =

∫
Y
dD−dy

√
gD−dg

mnδIAmδJAn,

with
δIAm = ∂IAm − Ω`I (u)∂mY`.

The compensator ΩIm = Ω`I (u)∂mY`(y) of the dim red EFT has contributions
due to arbitrary D-dimensional gauge transformations v(x , y) = v `(x)Y`(y),
not just those with ` = 0.
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Conclusions

In the context of D-dimensional U(1) gauge theory compactified on a
manifold YD−d , we have seen that:

compensators introduced “by hand” as Lagrange multipliers ensure
D-dimensional gauge invariance of the dimensional reduction ansatz and
of the resulting d-dimensional scalar kinetic terms;

the full space of gauge connections on YD−d is a fiber bundle, and the
compensators can be interpreted as a preferred connection on this bundle;

as such, the compensators arise naturally in the untruncated theory and
need not be included by hand;

in the full untruncated theory, the KK gauge bosons eat the vertical
moduli, and the scalar potential lifts those horizontal moduli
corresponding to non-flat deformations of the gauge field;

the effective field theory below the compactification scale exactly agrees
with that of the dimensional reduction ansatz.

Generalizing to gravity and Yang-Mills, the story is analogous, but the KK is
expansion is not as “clean.” For example, v `∂mY` of the U(1) theory
generalizes to invariant 1-forms g−1∂mg and (∂mg)g−1 of Yang-Mills, but
with no correspondingly simple global expansion in Laplace eigenfunctions.
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