Ultra-Peripheral Collisions at STAR

W. Schmidke, BNL
For the STAR Collaboration

DPF2019
Northeastern Univ., Boston

- Ultra-Peripheral Collisions (UPC) & e^+e^- processes
- The STAR detector & UPC data selection
- UPC J/ψ in Au+Au
- UPC J/ψ in polarized p^\uparrow+Au
Ultra-Peripheral Collisions (UPC)

- UPC: $b > 2R$, hadronic interactions suppressed

- Large flux of photons coming from Weizsaecker-Williams:
 - WW photon from one beam particle
 \rightarrow photoproduction on other beam particle
 e.g. J/ψ production, sensitive to gluons:

 - Photon may interact: coherently, with whole nucleus
 incoherently, with individual nucleons

 - Coherent: nucleus may survive intact, or
 break up via mutual Coulomb dissociation
 - Incoherent: nucleus likely breaks up
 nucleon may emerge w/ full momentum, or
 dissociate into multiparticle final state
UPC processes in AuAu

- Observed here in low p_T e^+e^- pairs
- Not sensitive to all w/ present statistics, as noted later

High statistics
- J/ψ photoproduction, $m_{ee} \sim m_{J/\psi}$: coherent, large nucleus \leftrightarrow low p_T
 incoherent, small nucleon \leftrightarrow high p_T
 incoherent w/ nucleon diss. \leftrightarrow higher p_T

- QED $2\gamma \rightarrow e^+e^-$, m_{ee} continuum:
 low p_T

Low statistics
- $\psi(2S) \rightarrow e^+e^-$, $m_{ee} \sim m_{\psi(2S)}$: coh. low p_T, inc. high p_T, nucl. diss. higher p_T
- Feed-down $\psi(2S) \rightarrow J/\psi + X$, $J/\psi \rightarrow e^+e^-$, $m_{ee} \sim m_{J/\psi}$: higher p_T from 2S decay
 $BR(\psi(2S) \rightarrow J/\psi + X) \cdot BR(J/\psi \rightarrow e^+e^-) / BR(\psi(2S) \rightarrow e^+e^-) \sim 4.6$
The STAR detector, data selection

Trigger:
- Back-to-back showers in BEMC
- Veto BBC (reject hadronic central collisions)
- Au+Au: BEMC 'active', also require 2-6 hits in TOF
- p↑+Au: reject nuclear breakup, veto ZDCs

Offline selection:
- Reject high activity events (# TOF hits, # BEMC showers)
- 2 tracks match BEMC showers, vertex in the STAR center
- Tracks well reconstructed, dE/dx select ee, reject hadron pairs

Data sets:
- 2015 p↑Au, $L = 140$ nb$^{-1}$
- 2016 AuAu, $L = 13$ nb$^{-1}$
Au+Au: data features

- p_T vs. m_{ee} for opp. sign pairs:
 - High stat. features clear:
 - coh. J/ψ @ low p_T
 - & rad. tail lower m_{ee}, higher p_T
 - inc. J/ψ @ high p_T
 - QED 2γ continuum @ low p_T

- m_{ee} for opp./like-sign pairs:
 - Small like sign contamination @ low m_{ee}
 - (& high p_T, not shown)
 - Take as combinatoric bkg.: for final distributions take (opposite-like) sign
UPC processes (slide 3) generated w/ STARlight, modifications:
- p_T of coherent J/ψ & 2γ too high, reweighted to match data
- incoherent J/ψ w/ nucleon dissociation p_T shape from HERA

Passed processes through simulation of the STAR detector: templates
Fit sum templates to data

$p_T < 0.15$ GeV/c:

Zoom $\psi(2S)$ region:

$\psi(2S)$: $N_{\psi(2S)} = 130 \pm 23$
5.7 σ from zero
Not stat. sensitive to inc. $\psi(2S)$, buried by 2γ

UPC procs→data comparison: m_{ee}

- Fit sum of: J/ψ, $\psi(2S)$, QED 2γ
- Fit describes data: peaks & rad. tails & 2γ shape over ~3 orders mag. in σ
• Fix QED 2γ & $\psi(2S)$ from m_{ee} fit, fit sum others to data
• $3.0 < m_{ee} < 3.2 \text{ GeV/c}^2$

Good description of data, need all processes:
• coherent J/ψ & QED @ low p_T
• feed-down from $\psi(2S)$ & incoherent J/ψ @ mid p_T
• incoherent J/ψ w/ nucleon dissociation for high p_T tail
Nuclear dissociation ↔ J/ψ p

- Zero Degree Calorimeters in each beam direction:
 - tag ≥1 neutron with ~ nucleon beam energy (100 GeV)
 - J/ψ p_T: at least 1 n one side vs. no neutrons either side (0n0n)

Clear difference:
- Incoherent processes ~always produce a neutron
- Coherent processes also produce neutrons: Coulomb dissociation
- 0n0n fully described by coherent components & QED 2γ
- Incoherent processes fit consistent w/ 0
- Vetoing on neutrons ⇒ clean sample of coherent processes
- Good starting point study of coherent p_T, analysis continuing...
Coherent J/ψ |t| distribution

- More developed STAR result: UPC J/ψ p_T distributions from 2014
- Trigger required neutrons both sides: incoherent present, subtract

-subtract QED 2γ & J/ψ incoherent (exponential fit)
- Diff. cross section $d\sigma/d|t|$, $|t| \propto p_T^2$
- Compare to some models:

 - STARLIGHT: Klein, Nystrand
 CPC 212 (2017) 258-268
 - includes effects of photon p_T
 - MS: Mäntysaari, Schenke
 - CCK: Cepila, Contreras, Krelina

Can start model comparisons:
- Dip/ankle @ expected |t|?
- Dips washed out by γp_T?
Generalized Parton Distributions

- GPDs: Correlated quark momentum and helicity distributions in transverse space
- Access to: 3D imaging of proton q & g orbital angular momentum L_q & L_g
- GPDs for each q,g: $H_{q,g}^{\eta}/E_{q,g}^{\eta}(x,\xi,t)$ conserve/flip nucleon helicity
- The GPDs $E_{q,g}^{\eta}$ responsible for orbital angular momentum

Photoproduction w/ polarized protons
- Target particle polarized proton p^{\uparrow}:
 J/ψ photoproduction $d\sigma/d\varphi \propto 1 + A_N^\gamma \cos(\varphi)$
 $\varphi = \text{azimuthal angle around beam axis}$
- A_N^γ calculable with GPDs*:
 \[A_N^\gamma \propto p_T \cdot \frac{\text{Im}(H^g \cdot E^g*)}{|H^g|^2} \]
- $A_N^\gamma \propto E^g \Rightarrow \text{sensitive to gluon orbital angular momentum } L_g$
- Unique RHIC capability: polarized protons, p^{\uparrow}Au run in 2015

UPC processes in $p^{↑}+Au$

$\gamma p^{↑} J/\psi$ photoproduction:
- Au photon source, $p^{↑}$ target

$\gamma Au J/\psi$ photoproduction:
- $p^{↑}$ photon source, Au target

Also:
- Continuum e^+e^- QED 2-γ process

Other processes seen in Au+Au:
- not discernible w/ statistics this data sample
As for Au+Au fit sum MC templates to data:

- Fix ratio J/Ψ components (γp↑:γAu)
 from p_T fit (next step, iterate)
- Fit data to sum J/Ψ and QED 2γ
- Good description all features:
 - J/Ψ peak location, width & rad. tail
 - QED 2γ continuum
- Fix 2γ for p_T fit, fit sum γp↑, γAu

γp↑ @ high p_T ~ AuAu incoherent
γAu @ low p_T ~ AuAu coherent

Want A_Nγ for γp↑ process, @ low p_T γAu & 2γ bkg., cut out
For A_Nγ: 0.2 < p_T < 1.5 GeV/c
Purity = 92%
Count events $2.8 < m_{ee} < 3.2$ GeV/c^2, $0.2 < p_T < 1.5$ GeV/c for:

- p^\uparrow beam spin up/down, $J/\psi \cos(\varphi) > 0 / \cos(\varphi) < 0$ (total 231 events)

Correct for:

- purity = 92%, p^\uparrow beam polarization $P = 61.3$

Result:

$$A_N^\gamma = 0.05 \pm 0.20 \at \langle W_{\gamma p} \rangle = 23.8 \text{ GeV}, \langle p_T \rangle = 0.48 \text{ GeV/c}$$

$W_{\gamma p} = \gamma p$ c.m. energy

Null result, but proof of principle this measurement

Lansberg et al. have curve $\langle p_T \rangle = 0.7$ GeV/c, remade for 0.48 GeV:

(J. Wagner, private communication)

Can see what's needed to test such models:

- higher statistics
- lower $W_{\gamma p}$

Future @ RHIC?

STAR preliminary
These analyses used central STAR $-1<\eta<1$

Already in STAR:
iTPC tracking, endcap EMC triggering $1<\eta<2.2$

Coming soon 2021+ STAR Forward Upgrade w/ tracking & calorimetry $2.5<\eta<4$

Future RHIC $p^{\uparrow}Au$ runs 2022+:
- measure @ lower $W_{\gamma p}$
- higher cross section (stats.)
- larger A_{N}^{γ}

Should be sensitive to e.g. Lansberg et al. models
Summary UPC

UPC in 200 GeV Au+Au
- Large statistics, processes observed:
 - J/ψ: coherent, incoherent, incoherent w/ nucleon dissociation
 - ψ(2S): coherent in e⁺e⁻ & J/ψ+X channels
 - QED 2γ
- Nuclear dissociation tagged by neutrons in 0° calorimeters:
 - incoherent processes ~always produce neutron
 - veto neutrons → clean sample coherent processes

UPC in 200 GeV polarized p↑+Au:
- Observed J/ψ in γp↑ & γAu, QED 2γ
- Proof of principle: measurement of \(A_N^\gamma \propto E^g \sim \text{gluon } L_g \)
 null result here, but:
- Promising outlook for future RHIC runs
Extras
STAR Forward Diffraction

- STAR has a Roman Pot (RP) system: RHIC proton beams, tag/measure scattered p w/ ~beam energy

![Top view diagram](image1)

![Side view diagram](image2)

- Recent data w/ pp, pAu, pAl @ $\sqrt{s}=200$ GeV, pp @ 510 GeV
- First results from pp 200:
 - elastic pp scattering \Rightarrow total pp cross section
 - single diffractive dissociation
 - central exclusive production
pp elastic scattering

- Fundamental *pp* physics measurement
- Measure back-to-back protons both beam directions, scattering angle \Rightarrow momentum transfer t:
 - $d\sigma_{el}/d|t|$ well described by $e^{-B|t|}$
 - $B_{el} = 14.32 \pm 0.09$ @ $\sqrt{s}=200$ GeV
 - consistent w/ world data $B_{el} \propto \log(s)$

- **slope B_{el} & world data:**
- **$\sigma_{el,tot}$ & world data:**
 - $\int e^{-B|t|} \Rightarrow \sigma_{el}$
 - $d\sigma_{el}/d|t| \big|_{t=0}$, optical theorem
 - $\Rightarrow \sigma_{tot}, \sigma_{inel} = \sigma_{tot} - \sigma_{el}$
 - consistent w/ fit world data
Diffractive final states

• Final states measured in central STAR, tag proton in RP:

 - Proton 1 side: single diffractive dissociation (SDD)

 - Proton 2 sides: central exclusive production (CEP), 2 Pomeron fusion

• Final state properties, input for models, e.g.:

 - CEP $m_{\pi\pi}$ spectrum many features, no model describes all features partial wave analysis?

• SDD single particle p_T spectrum ~described by Pythia
Au+Au: m_{ee} fit

- m_{ee} fit not sensitive to different J/ψ components:

- Fix ratio $\psi(2S) \rightarrow J/\psi + X / \psi(2S) \rightarrow e^+e^-$ by BRs
- Fix ratio (inc.:coh.) J/ψ from p_T fit (next step, iterated)
- Fit sum of: J/ψ, $\psi(2S)$, QED 2γ
On a linear Y scale:

- Deviation @ lowest m_{ee}: trigger threshold uncertainty
- Fit performed $2.2 < m_{ee} < 6$ GeV/c2
Au+Au: p_\perp fit

- MC p_\perp templates for two processes:
 - incoherent $J/\psi \rightarrow e^+e^-$
 - feed-down incoherent $\psi(2S) \rightarrow J/\psi + X$, $J/\psi \rightarrow e^+e^-$

- ~indistinguishable
- treated as one component for comparison/fit to data
Au+Au: p_T for 3 ZDC categories

- Shown w/ vertical scale same range 10^3:

 - $\geq 1n$ both ZDCs:
 - $\geq 1n$ one ZDC, other ZDC empty:
 - both ZDCs empty:

 Coherent peak always present & prominent regardless of neutrons: Coulomb dissociation
 Incoherent components only present when some neutrons
 \[\rightarrow \text{fit consistent with zero for } 0n0n \]
Coherent $J/\psi \ |t|\text{ distribution}$

- **STARLIGHT:** Klein, Nystrand, CPC 212 (2017) 258-268
 - VMD and Glauber approach, includes effects of photon pT
- **MS:** Mäntysaari, Schenke, Phys.Lett. B772 (2017) 832-838
 - Dipole approach with IPsat amplitude
- **CCK:** Cepila, Contreras, Krelina, Phys.Rev. C97 (2018) no.2, 024901
 - Hot spot model for nucleons, dipole approach
- **MS & CCK** scaled to XnXn using STARLIGHT
p↑+Au: p_T, m_{ee} distributions

p_T vs m_{ee} for opp. sign pairs:

- Box shows fiducial region for A_N^γ measurement:

 \[2.8 < m_{ee} < 3.2 \text{ GeV/c}^2, \]

 \[0.2 < p_T < 1.5 \text{ GeV/c} \]

m_{ee} dist. or opp./like sign pairs:

- For final distributions take (opposite-like) sign

STAR preliminary

$p^{\uparrow}Au \rightarrow e^+e^-pAu \quad \sqrt{s_{NN}}=200\text{GeV} \quad |y|<1$
Cross-ratio (for non-spin experts)

- If have one beam w/ spin up, and detectors left (L) and right (R) of beam, can measure asym. but would need to know relative acceptances of L/R detectors

- If have one detector left of beam, and beam bunches w/ spin up (+) and down (-), can measure asym., but would need to know relative luminosities of +/- beams

- If have both L/R detectors and +/- bunches, acceptances and luminosities cancel out in the “cross-ratio”*:

$$\epsilon = \frac{\sqrt{N_{R+}N_{L-}} - \sqrt{N_{L+}N_{R-}}}{\sqrt{N_{R+}N_{L-}} + \sqrt{N_{L+}N_{R-}}}$$

* NIM 109 (1973) 41