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HeRALD: Helium Roton Apparatus for Light Dark matter

• Superfluid 4He as a target material


• Favorable recoil kinematics


• Recoil energy can be fully reconstructed with TES calorimetry


• Zero bulk radiogenic backgrounds


• No Compton backgrounds below 20 eV


• HERON experiment at Brown (Seidel, Maris), proof 
of concept work
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Excitations in Superfluid 4He
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Excitations in Superfluid 4He
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Excitations in Superfluid 4He
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Energy Partitioning
• Nuclear and electron recoils have different energy partitioning! 

• Estimated from measured excitation/ionization cross sections


• Compared to other noble elements, lots of energy goes into atomic excitations


• Distinguishable with signal timing
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Activities at Berkeley
• Measuring the light yield for nuclear recoils in 4He


• Neutron scattering experiment at room and cryogenic temperatures (red curve)


• Room temperature on arXiv: 1907.03985
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Background Simulations
• Radon surface backgrounds not yet considered
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Sensitivity Projections
• Solid red curve, 1 kg-day 

@ 40 eV threshold


• 3.5 eV (sigma) 
calorimeter resolution


• 9x “adhesion gain”


• 5% quasiparticle 
detection efficiency

!10

Neutrino Floor

Direct Detection

Astrophysics

1 kg-day 
40 eV

100 kg-yr 
1 meV

Bulk 
Fluid



Low Energy Neutron Calibration
• Coincidence at 24 keV:


• Energy of convenient photroneutron source (124SbBe)


• Energy of ‘notch’ in cross section of Fe (~100 m 
interaction length)


• Result: can surround a photroneutron source in material 
opaque to gammas but transparent to 24 keV neutrons


• Endpoint in He: 14 keV


• 1 GBq 124 Sb source (practical) results in a few n/s collimated 
neutrons


• Also looking into pulsed source based on pulsed filtered neutron 
generator, DD or DT
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Activity at UMass

• Characterizing dilution refrigerator


• Uncertainty in how quasiparticles, triplet 
excitations interact at surfaces


• Adhesion gain: use materials with higher van 
der waals attraction, keep calorimeter dry


• Adapting the HERON film burner design, 
demonstrated but heat load problematic
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Heat Load Free Film Stopping: Cesium

• Cesium coated surfaces, 
demonstrated but technically 
difficult


• Nacher and Dupont-Roc, 
PRL 67, 2966 (1991)


• Rutledge and Taborek, 
PRL 69, 937 (1992)
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• Atomically sharp knife edges, 
used by x-ray satellites at 
higher temperatures, has yet to 
be conclusively demonstrated 
[Y. Ezoe et al J. Astron. Telesc. Instrum. Syst. 4(1) 
011203 (27 October 2017)]
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Heat Load Free Film Stopping: Geometry
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Excitations in Superfluid 4He
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Sensitivity Projections Cont.
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Extending Sensitivity with Off Shell Interactions

• The 0.6 meV evaporation threshold limits 
nuclear recoil DM search to mDM >~ 1 MeV


• Can be avoided if we find an excitation 
with an effective mass closer to the DM 
mass, allow DM to deposit more energy in 
the detector


• In helium this could be recoiling off the 
bulk fluid and creating off shell 
quasiparticles
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Detecting Vibrations: Vibrations in Helium
• The vibrational (“quasiparticle”, “QP”) 

excitations we expect to see are phonons 
and rotons


• Velocity is slope of dispersion relation


• Rotons ~ “high momentum phonons”


• Just another part of the same 
dispersion relation


• R- propagates in opposite direction to 
momentum vector
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Distinguishing Quasiparticles and Excitations

• Use signal timing


• Singlet signal expected to have O(10 ns) fall time, delta function in 
calorimeter


• Triplets have O(1 m/s) velocity, observed as a delta function mostly in 
immersed calorimetry


• Quasiparticles signal expected to have O(10-100 ms) fall time, mostly 
observed on surface calorimeter spread out
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Example Waveform
• Based on HERON R&D


• Can distinguish scintillation and 
evaporation based on timing
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J. S. Adams et al. AIP Conference Proceedings 533, 112 (2000) 
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Another Example Waveform
• Distinguish between different phonon distributions by arrival time in detector


• R+ arrive first


• P travel at a mix of slower speeds and arrive next


• R- can’t evaporate directly, need reflection on bottom to convert into R+ or P
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