HeRALD: Direct Detection with Superfluid 4He

UMassAnherst

Doug Pinckney on behalf of the HeRALD collaboration 1 August 2019

arXiv:1810.06283v1

HeRALD: Helium Roton Apparatus for Light Dark matter

- Superfluid 4He as a target material
 - Favorable recoil kinematics
 - Recoil energy can be fully reconstructed with TES calorimetry \bullet
 - Zero bulk radiogenic backgrounds
 - No Compton backgrounds below 20 eV lacksquare
- HERON experiment at Brown (Seidel, Maris), proof of concept work

Detection Method

Absorbed in calorimeters on 10 ns timescale

Detection Method

Absorbed in calorimeters on 10 ns timescale

Ballistic, travel at
O(1 m/s), deposit energy in immersed calorimeters

Detection Method

Absorbed in calorimeters on 10 ns timescale

Ballistic, travel at
O(1 m/s), deposit energy in immersed calorimeters

Adsorption of quantum evaporated He atoms on upper calorimeter + adhesion gain, 10-100 ms timescale

Energy Partitioning

- Nuclear and electron recoils have different energy partitioning!
- Estimated from measured excitation/ionization cross sections
- Compared to other noble elements, lots of energy goes into atomic excitations
- Distinguishable with signal timing

Blue = quasiparticle $\mathbf{Red} = \mathbf{Singlet}$ **Green = Triplet Grey = IR photon**

-	-	-	+	-		
1	i.	1	ł	1	11	
	1		1	1		
	1	1	1			
	1	1	1		1.1	
1	1	1	1	1	11	
			1			
1	1	1	1	1	11	1
	1	1	1		1.1	
1	1	1	1	1	11	
		ł	1	ł		
		1	1	1		
		1	1	1	1.1	
	-	-	-	-		1
	1		1	1		
	1	1	1			
	1	1	1		1.1	
1	1	1	ł	1	11	
	1	1	1	1		
1	1	1	1		11	
	1	1	1		11	
1	i.	1	ł	1	11	
						1
	1	1	1			
1	÷	1	i	1	11	
	1	1	1	1		
1	1	1	1	ī	11	ĺ
		1	1		11	
1	1	1	1	1	11	J
			ł	ł		
		1	1	ł	11	
		1	1	1		

Activities at Berkeley

- Measuring the light yield for nuclear recoils in 4He
- Neutron scattering experiment at room and cryogenic temperatures (red curve)
 - Room temperature on arXiv: 1907.03985

From V. Velan

Blue = quasiparticle Red = Singlet**Green = Triplet Grey = IR photon**

		_				- 2-4
1	1	1	1	1	ł	1
1	1	I	1	1	1	•
	1	1	1	1	1	
1	1	1	1	1	I	×
1	1	1	1	1	ł	1
	1	ï	1	1	1	•
1	1	1	1	1	ī	7
1	1	i	1	1	I	×
1	1	1	×	1	ł	1
1	1	1	1	1	1	1
	1	I	1	1	1	
1	1	i	1	1	i	
+	+	+	+	+	+	÷
1	1	I	1	1	1	
	1	I	1	1	1	
	1	i	1	1	I	1
	_	-			ş	
i.		ï			i	
1	1	1	1	1	1	1
1	1	1	1		ļ	1
1	1	1	1	-		1
1	2 2 3 4	1	1	1	1	1
1	2 2 3 4	1	1 1	1	1 1	1
1	2 2 3 4	1 1	1 1 1	1	1 1 1	
1	2 2 3 4 3 3	1 1 1	1 1 1 1 1 1 1	1	1 1 1	1 1 1 1 1
1 1 1	1 1 1	1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1		
1 1 1	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	1 3 4 3 4 3 4 3 4 3 4 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * * *	1 1 1 1 1 1 1		
	* * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1		
	* * * * *					

Background Simulations

Radon surface backgrounds not yet considered

Sensitivity Projections

- Solid red curve, 1 kg-day @ 40 eV threshold
 - 3.5 eV (sigma) calorimeter resolution
 - 9x "adhesion gain"
 - 5% quasiparticle detection efficiency

Low Energy Neutron Calibration

- Coincidence at 24 keV:
 - Energy of convenient photroneutron source (124SbBe)
 - Energy of 'notch' in cross section of Fe (~100 m) interaction length)
 - Result: can surround a photroneutron source in material opaque to gammas but transparent to 24 keV neutrons
- Endpoint in He: 14 keV
- 1 GBq 124 Sb source (practical) results in a few n/s collimated ulletneutrons
- Also looking into pulsed source based on pulsed filtered neutron generator, DD or DT

- Characterizing dilution refrigerator
- Uncertainty in how quasiparticles, triplet excitations interact at surfaces
- Adhesion gain: use materials with higher van der waals attraction, keep calorimeter dry
 - Adapting the HERON film burner design, demonstrated but heat load problematic

Activity at UMass

Heat Load Free Film Stopping: Cesium

- Cesium coated surfaces, demonstrated but technically difficult
 - Nacher and Dupont-Roc, PRL 67, 2966 (1991)
 - Rutledge and Taborek, PRL 69, 937 (1992)

Heat Load Free Film Stopping: Geometry

• Atomically sharp knife edges, used by x-ray satellites at higher temperatures, has yet to be conclusively demonstrated [Y. Ezoe et al J. Astron. Telesc. Instrum. Syst. 4(1) 011203 (27 October 2017)]

UMass

Dilution Refrigerator Characterization

keV-scale neutron calibration

Berkeley

Scintillation yield measurements

Extras

From Scott Hertel

quasiparticle

Film Burner Model

Experimental film stoppage area

Detected State

Vibrations (phonons, rotons)

Singlet UV Photons

Triplet Kinetic Excitations

(IR Photons)

Sensitivity Projections Cont.

Curve	Exposure	Threshold		
Solid Red	1 kg-day	40 eV		
Dashed Red	1 kg-yr	10 eV		
Dotted Red	10 kg-yr	0.1 eV		
Dashed-Dotted Red	100 kg-yr	1 meV		
Dashed- Dotted-Dotted Red	100 kg-yr	1 meV + 0		

off shell phonon sensitivity

Extending Sensitivity with Off Shell Interactions

- The 0.6 meV evaporation threshold limits nuclear recoil DM search to m_{DM} >~ 1 MeV
- Can be avoided if we find an excitation with an effective mass closer to the DM mass, allow DM to deposit more energy in the detector
 - In helium this could be recoiling off the bulk fluid and creating off shell quasiparticles

Detecting Vibrations: Vibrations in Helium

- The vibrational ("quasiparticle", "QP") excitations we expect to see are phonons and rotons
- Velocity is slope of dispersion relation
- Rotons ~ "high momentum phonons"
 - Just another part of the same dispersion relation
 - R- propagates in opposite direction to momentum vector

Distinguishing Quasiparticles and Excitations

- Use signal timing
 - Singlet signal expected to have O(10 ns) fall time, delta function in calorimeter
 - Triplets have O(1 m/s) velocity, observed as a delta function mostly in immersed calorimetry
 - Quasiparticles signal expected to have O(10-100 ms) fall time, mostly observed on surface calorimeter spread out

Example Waveform

- Based on HERON R&D \bullet
 - Can distinguish scintillation and evaporation based on timing

J. S. Adams et al. AIP Conference Proceedings 533, 112 (2000) Annotations from Vetri Velan

Another Example Waveform

- Distinguish between different phonon distributions by arrival time in detector \bullet
 - R+ arrive first
 - P travel at a mix of slower speeds and arrive next \bullet
 - R- can't evaporate directly, need reflection on bottom to convert into R+ or P

FIG. 3. Several fundamental characteristics of superfluid ⁴He quasiparticles are here illustrated. TOP: the dispersion relation. MIDDLE: the group velocity. BOTTOM: transmission probabilities at normal incidence in two cases, incident on a ⁴He-solid interface with solid phonon outgoing state (red dashed) and incident on a ⁴He-vacuum interface with outgoing state a ⁴He atom (blue solid). At both high and low momentum quasiparticles are of finite lifetime, and unlikely to reach an interface before decay.

