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HeRALD: Helium Roton Apparatus for Light Dark matter

Calorimeters

o Superfluid 4He as a target material

v

Vacuum gap

 Favorable recoil kinematics
* Recoil energy can be fully reconstructed with TES calorimetry
* Zero bulk radiogenic backgrounds Superfluid

4He
* No Compton backgrounds below 20 eV

« HERON experiment at Brown (Seidel, Maris), proof
of concept work



Excitations in Superfluid 4He
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Excitations in Superfluid
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Excitations in Superfluid 4He
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Energy Partitioning

Nuclear and electron recoils have different energy partitioning!

Estimated from measured excitation/ionization cross sections

Blue = quasiparticle
Red = Singlet
Green = Triplet
Grey = IR photon

Compared to other noble elements, lots of energy goes into atomic excitations

Distinguishable with signal timing

| Active veto for
{ recoils less '
than 20 eV

Leakage Fraction
(-]
o

108
102 102 107! 100 10! 102 103 104 10°
Recoil Energy (eV)

Nuclear Recoil

O
o

O
»

Energy Fraction
o
~

O
\

—
L - — - .. - i Dt il A Deddhdhdid

o

10" 102 10° 10* 10°10’

Recolil Energy [eV]

Electron Recoil

10° 10° 10% 10°
Recoil Energy [eV]



ACtiVitieS at Berkeley Blue = quasiparticle

 Measuring the light yield for nuclear recoils in 4He

Red = Singlet
Green = Triplet
Grey = IR photon

* Neutron scattering experiment at room and cryogenic temperatures (red curve)

e Room temperature on arXiv: 190/7.03985

Recoil neutron

Neutron detector

Neutron beam

¥
Recoil helium atom
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Background Simulations

 Radon surface backgrounds not yet considered
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Sensitivity Projections

e Solid red curve, 1 kg-day
@ 40 eV threshold

¢ 3.5 eV (sigma)
calorimeter resolution

* 9Ox "adhesion gain”

5% quasiparticle
detection efficiency
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Low Energy Neutron Calibration

e Coincidence at 24 keV:

* Energy of convenient photroneutron source (124SbBe)

* Energy of ‘notch’ in cross section of Fe (~100 m

interaction length)

* Result: can surround a photroneutron source in material
opague to gammas but transparent to 24 keV neutrons

 Endpoint in He: 14 keV

« 1 GBq 124 Sb source (practical) results in a few n/s collimated

neutrons

* Also looking into pulsed source based on pulsed filtered neutron

generator, DD or DT
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Activity at UMass

Evaporator Condenser

» Characterizing dilution refrigerator Surface Suriace
 Uncertainty in how quasiparticles, triplet A A
excitations interact at surfaces : :

 Adhesion gain: use materials with higher van
der waals attraction, keep calorimeter dry

* Adapting the HERON film burner design,
demonstrated but heat load problematic
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Heat Load Free Film Stopping: Cesium

 Cesium coated surfaces,
demonstrated but technically
difficult

 Nacher and Dupont-Roc,
PRL 67, 2966 (1991)

 Rutledge and Taborek,
PRL 69, 937 (1992)
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Heat Load Free Film Stopping: Geometry

 Atomically sharp knife edges,
used by x-ray satellites at
higher temperatures, has yet to

be conclusively demonstrated

[Y. Ezoe et al J. Astron. Telesc. Instrum. Syst. 4(1)
011203 (27 October 2017)]
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Next Steps

Quasiparticle Reflection
He Film Stopping
Adhesion Gain
keV-scale neutron calibration

R ————————————

Scintillation yield measurements

Commissioning a dilution refrigerator (calorimetry)
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Dilution

UMass Refrigerator
Characterization
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Extras



From Scott Hertel

van der Waals

quasiparticle free atom binding

Cal.

vacuum

O
10s of meV

17



Film Burner Model

Experimental film stoppage

_l' L

Surface




Excitations in Superfluid 4He

Detected State

Vibrations Vibrations
(phonons, rotons) (phonons, rotons)

Excitati Dimer Excimers
\ / xEranions mer =x¢ Singlet UV Photons

— ©—— @

I Triplet Kinetic Excitations

lonization
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Sensitivity Projections Cont.
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Extending Sensitivity with Off Shell Interactions

10724
10-26 |
 The 0.6 meV evaporation threshold limits R I
nuclear recoil DM search to mpm >~ 1 MeV < 10 AN . |
S o10%q [ WEmeeEE
» Can be avoided if we find an excitation S
with an effective mass closer to the DM g A
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the detector § 104
S
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1050

107" 10° 10" 10% 10° 10* 10° 10°

N Dark Matter mass [MeV/c?]



Detecting Vibrations: Vibrations in Helium

* The vibrational (“quasiparticle”, “QP”)

1.5 r f f :
excitations we expect to see are phonons phonons R- | R+
and rotons | | | |

L . . . s 1t N

e Velocity is slope of dispersion relation ?é
3

* Rotons ~ "high momentum phonons” o ; : ; :
o 0.5 SRR N R SR KX

e Just another part of the same
dispersion relation
0

0 1 2 3 4
* R- propagates in opposite direction to momentum [keV/c]
momentum vector
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Distinguishing Quasiparticles and Excitations

e Use signal timing

e Singlet signal expected to have O(10 ns) fall time, delta function in
calorimeter

* Triplets have O(1 m/s) velocity, observed as a delta function mostly In
Immersed calorimetry

* Quasiparticles signal expected to have O(10-100 ms) fall time, mostly
observed on surface calorimeter spread out

23



Example Waveform

 Based on HERON R&D HERON DATA
i -
c )
e Can distinguish scintillation and = =
evaporation based on timing g 0
| |E

| S
g 365 keV electron recoll
5
)
500 1500
Time (usec)

J. S. Adams et al. AIP Conference Proceedings 533, 112 (2000)
Annotations from Vetri Velan
24



Another Example Waveform

* Distinguish between different phonon distributions by arrival time in detector
* R+ arrive first
P travel at a mix of slower speeds and arrive next

 R- can’t evaporate directly, need reflection on bottom to convert into R+ or P
Recent Quasiparticle Simulation

I 1.5

. . . . %
phonons R- R+ =
| 1 3 | 5 0.12 R b R po
Q T -
= 1 S 0.1 A// P
= 1t N S ,
(] — p
% § 0.08
5 ] = 0.06
) 0.5 ....... ....... ....... ....... ..... .9
' ' ' ' E 0.04 +
S 0.02¢}
O ; ; : : g
0 1 2 3 4 LI 0 l 1 : :
momentum [keV/c] 0 0.5 1 1.5 2 2.5
t [mS]
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Solid Vacuum
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FIG. 3. Several fundamental characteristics of superfluid
*He quasiparticles are here illustrated. TOP: the dispersion
relation. MIDDLE: the group velocity. BOTTOM:
transmission probabilities at normal incidence in two cases,
incident on a “He-solid interface with solid phonon outgoing
state (red dashed) and incident on a *He-vacuum interface
with outgoing state a “He atom (blue solid). At both high
and low momentum quasiparticles are of finite lifetime, and
unlikely to reach an interface before decay.
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