DAMIC (DArk Matter In CCDs) At SNOLAB

Alex Piers

University of Washington On behalf of the DAMIC Collaboration

July 30, 2019

Outline

Dark Matter Motivation

CCD Detectors General Operation DAMIC Detector Performance

DAMIC at SNOLAB Experimental Setup Event Selection

Results Background Model Expected Sensitivity

Appendix

Motivation

- Cosmological evidence for DM (CMB, galaxy rotations, etc.)
- Weakly interacting particle is an attractive candidate (GeV scale mass)
- DAMIC is interested in low mass models

Galaxy Rotations

Potential WIMP Parameter Space

General CCD Operations

V

Х

7

X

- ▶ Variable exposure
- Adjustable readout to minimize noise
- ▶ Well known energy properties
 - ▶ Si band-gap: 1.2 eV
 - \blacktriangleright Si W_{ehp} : 3.8 eV

Detector Noise and Measurements

Very low noise and dark current. At 140 K, $I_{DC} = 5 * 10^{-22}$ A cm⁻² or $6 * 10^{-4}$ e⁻pixel⁻¹day⁻¹

Low energy threshold (due to noise performace) makes DAMIC CCDs sensitive to low mass WIMP interactions

DAMIC at SNOLAB Installation and Setup

DAMIC at SNOLAB Data Runs

WIMP Search Event Selection

Quality Cuts:

- ► Low Radon
- Stable Temperature
- ▶ Low Dark Current
- Mask Defects
- ► Δ*LL*

$\Delta \mathcal{L} \mathcal{L}$

 $\Delta \mathcal{LL} = \mathcal{L}_{noise} - \mathcal{L}_{noise+gaus}$ is a statistical measure of how different a cluster is from noise.

Sample events that passed all cuts shown on the right

For every event E, σ_x , and $\Delta \mathcal{LL}$ is extracted

Background Spectral Fit

- Geant4 Simulation of detector and radio contaminations (bulk and surface)
- 2D Likelihood fit in (E, σ_x) space of simulation to data
- Background fit E > 6 keV_{ee}(DM search E < 6 keV_{ee})
- Masking Cu fluorescence; have not validated this Geant4 process yet
- 1D projections show to the right

2D Background Model

Apply Detector Response: Sample from z-E spectrum Apply diffusion model to point deposition with random (x, y) and selected (z, E)coordinate Paste event on image blank Reconstruct $(E, \sigma_x, \Delta \mathcal{LL})$ to build detector background model

Detector Efficiency

- ▶ Efficiency at low eV_{ee}
- eV_{nr}(nuclear recoil, energy deposited by WIMP) to eV_{ee}(energy measured by detector) conversion applied
- DAMIC quenching factor calibrated for the energy range of the experiment

Expected Sensitivity from DAMIC at SNOLAB

Anticipated sensitivity for the 13.3 kg day exposure of DAMIC at SNOLAB

Light Dark Matter: DM-Electron Coupling

Expect paper on the arXiv soon! For more details, attend Karthik Ramanathan's talk on Thursday.

DAMIC Collaboration

Appendix

Depth Calibration and Diffusion Model

Energy Calibration

- ▶ Amplifiers measure amount of charge in ADU
- Conversion factor k (keV_{ee}/ADU) calibrated using O, Al, Si, Cr, Mn, and Fe x-ray lines
- \triangleright k is constant over the energy range we are interested in

arXiv:1607.07410

Nuclear Recoil Ionization Calibration

arXiv:1608.00957

- ▶ DAMIC collaboration performed nuclear recoil measurements on Si targets
- ▶ Calibrated down to 60 eV_{ee}(lowest threshold in Si)