Axion-like dark matter search using ferromagnetic toroids

Alexander Gramolin, Deniz Aybas, Dorian Johnson, Janos Adam, and Alexander Sushkov

2019 Meeting of the APS Division of Particles & Fields
Northeastern University
Boston, MA
• Dark matter (DM) accounts for $\approx 1/4$ of the total energy density of the Universe

• The local DM energy density is

$$\rho_{DM} \approx 0.4 \text{ GeV/cm}^3$$

• QCD axions and axion-like particles are excellent DM candidates

• The number density of axions per de Broglie volume is large: $n_a/\lambda^3 \gg 1$

• As a result, axions form an oscillating classical field

$$a(t) = a_0 \sin (m_a t), \quad a_0 \approx \sqrt{2\rho_{DM}/m_a}$$ \text{(in natural units, i.e., } \hbar = c = 1)$$

• Coherence time of these oscillations is limited by the virial velocity $v_{vir} \approx 10^{-3} c$:

$$\frac{\Delta \omega_a}{m_a} \approx v_{vir}^2 \approx 10^{-6}, \quad \tau_c \approx 10^6 \frac{2\pi}{m_a}$$
Dark matter (DM) accounts for $\approx 1/4$ of the total energy density of the Universe

The local DM energy density is

$$\rho_{\text{DM}} \approx 0.4 \text{ GeV/cm}^3$$

- QCD axions and axion-like particles are excellent DM candidates
- The number density of axions per de Broglie volume is large: $n_a/\lambda^3 \gg 1$
- As a result, axions form an oscillating classical field

$$a(t) = a_0 \sin (m_a t), \quad a_0 \approx \sqrt{2\rho_{\text{DM}}/m_a} \quad \text{(in natural units, i.e., } \hbar = c = 1)$$

- Coherence time of these oscillations is limited by the virial velocity $v_{\text{vir}} \approx 10^{-3} c$:

$$\frac{\Delta \omega_a}{m_a} \approx v_{\text{vir}}^2 \approx 10^{-6}, \quad \tau_c \approx 10^6 \frac{2\pi}{m_a}$$
Dark matter (DM) accounts for $\approx 1/4$ of the total energy density of the Universe.

The local DM energy density is

$$\rho_{DM} \approx 0.4 \text{ GeV/cm}^3$$

QCD axions and axion-like particles are excellent DM candidates.

The number density of axions per de Broglie volume is large: $n_a/\lambda^3 \gg 1$.

As a result, axions form an oscillating classical field

$$a(t) = a_0 \sin (m_a t), \quad a_0 \approx \sqrt{2\rho_{DM}/m_a} \quad \text{(in natural units, i.e., } \hbar = c = 1)$$

Coherence time of these oscillations is limited by the virial velocity $v_{vir} \approx 10^{-3} c$:

$$\frac{\Delta \omega_a}{m_a} \approx v_{vir}^2 \approx 10^{-6}, \quad \tau_c \approx 10^6 \frac{2\pi}{m_a}$$
Dark matter (DM) accounts for \(\approx 1/4 \) of the total energy density of the Universe.

The local DM energy density is

\[
\rho_{\text{DM}} \approx 0.4 \text{ GeV/cm}^3
\]

QCD axions and axion-like particles are excellent DM candidates.

The number density of axions per de Broglie volume is large: \(n_a / \lambda^3 \gg 1 \).

As a result, axions form an oscillating classical field

\[
a(t) = a_0 \sin (m_a t), \quad a_0 \approx \sqrt{2\rho_{\text{DM}}/m_a} \quad \text{(in natural units, i.e., } \hbar = c = 1)\]

Coherence time of these oscillations is limited by the virial velocity \(v_{\text{vir}} \approx 10^{-3}c \):

\[
\frac{\Delta \omega_a}{m_a} \approx v_{\text{vir}}^2 \approx 10^{-6}, \quad \tau_c \approx 10^6 \frac{2\pi}{m_a}
\]
Dark matter (DM) accounts for $\approx 1/4$ of the total energy density of the Universe.

The local DM energy density is

$$\rho_{\text{DM}} \approx 0.4 \text{ GeV/cm}^3$$

QCD axions and axion-like particles are excellent DM candidates.

The number density of axions per de Broglie volume is large: $n_a/\lambda^3 \gg 1$.

As a result, axions form an oscillating classical field

$$a(t) = a_0 \sin (m_a t), \quad a_0 \approx \sqrt{2\rho_{\text{DM}}/m_a} \quad \text{(in natural units, i.e., } \hbar = c = 1)$$

Coherence time of these oscillations is limited by the virial velocity $v_{\text{vir}} \approx 10^{-3} c$:

$$\frac{\Delta \omega_a}{m_a} \approx v_{\text{vir}}^2 \approx 10^{-6}, \quad \tau_c \approx 10^6 \frac{2\pi}{m_a}$$
Dark matter (DM) accounts for $\approx 1/4$ of the total energy density of the Universe.

The local DM energy density is

$$\rho_{\text{DM}} \approx 0.4 \text{ GeV/cm}^3$$

QCD axions and axion-like particles are excellent DM candidates.

The number density of axions per de Broglie volume is large: $n_a/\lambda^3 \gg 1$.

As a result, axions form an oscillating classical field

$$a(t) = a_0 \sin (m_a t), \quad a_0 \approx \sqrt{2\rho_{\text{DM}}/m_a} \quad \text{(in natural units, i.e., } \hbar = c = 1)$$

Coherence time of these oscillations is limited by the virial velocity $v_{\text{vir}} \approx 10^{-3} c$:

$$\frac{\Delta \omega_a}{m_a} \approx v_{\text{vir}}^2 \approx 10^{-6}, \quad \tau_c \approx 10^6 \frac{2\pi}{m_a}$$
Axion electrodynamics

In the presence of a background axion field

\[a(t) = a_0 \sin(m_a t), \]

inhomogeneous Maxwell’s equations take the form (in natural units, i.e., \(\varepsilon_0 = \mu_0 = 1 \))

\[
\nabla \cdot \mathbf{E} = \rho - g_{a\gamma\gamma} \nabla a \cdot \mathbf{B} \quad \text{(Gauss’s law)},
\]

\[
\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} + \mathbf{J} + g_{a\gamma\gamma} \left(\frac{\partial a}{\partial t} \mathbf{B} + \nabla a \times \mathbf{E} \right) \quad \text{(Ampère’s law)}.
\]

Under static magnetic field \(B_0 \), DM axions source an effective current density

\[
\mathbf{J}_{\text{eff}} = g_{a\gamma\gamma} \frac{\partial a}{\partial t} B_0 = g_{a\gamma\gamma} \sqrt{2 \rho_{\text{DM}}} B_0 \cos(m_a t).
\]

\[P. \ Sikivie, \ PRL \ 51, \ 1415 \ (1983) \]

\[P. \ Sikivie, N. \ Sullivan, \ D. \ B. \ Tanner, \ PRL \ 112, \ 131301 \ (2014) \ — \ LC \ Circuit \ proposal \]
Axion electrodynamics

- In the presence of a background axion field

\[a(t) = a_0 \sin (m_a t), \]

inhomogeneous Maxwell’s equations take the form (in natural units, i.e., \(\varepsilon_0 = \mu_0 = 1 \))

\[
\nabla \cdot E = \rho - g_{a\gamma\gamma} \nabla a \cdot B \quad \text{(Gauss’s law)},
\]

\[
\nabla \times B = \frac{\partial E}{\partial t} + J + g_{a\gamma\gamma} \left(\frac{\partial a}{\partial t} B + \nabla a \times E \right) \quad \text{(Ampère’s law)}.
\]

- Under static magnetic field \(B_0 \), DM axions source an effective current density

\[J_{\text{eff}} = g_{a\gamma\gamma} \frac{\partial a}{\partial t} B_0 = g_{a\gamma\gamma} \sqrt{2 \rho_{\text{DM}}} B_0 \cos (m_a t). \]

P. Sikivie, PRL 51, 1415 (1983)

Experimental approach

- Toroidal coil creates an azimuthal static magnetic field B_0
- Axion field $a(t)$ sources an azimuthal effective current J_{eff}
- J_{eff} generates an axial oscillating magnetic flux Φ_a
- Φ_a can be detected by a SQUID coupled to a pickup coil
- Similar to ABRACADABRA, but we use ferromagnetic core material to enhance B_0: $B_0 = H_0 + M$ (natural units)
- We tried two core materials: gadolinium-iron garnet (GdIG) and Fe-Ni alloy powder

\[a(t) = a_0 \sin(m_at) \]

\[J_{\text{eff}} = g_{a\gamma} \frac{\partial a}{\partial t} B_0 \]

Experimental approach

- Toroidal coil creates an azimuthal static magnetic field B_0
- Axion field $a(t)$ sources an azimuthal effective current J_{eff}
- J_{eff} generates an axial oscillating magnetic flux Φ_a
- Φ_a can be detected by a SQUID coupled to a pickup coil
- Similar to ABRACADABRA, but we use ferromagnetic core material to enhance B_0: $B_0 = H_0 + M$ (natural units)
- We tried two core materials: gadolinium-iron garnet (GdIG) and Fe-Ni alloy powder

\[a(t) = a_0 \sin (m_a t) \]

\[J_{\text{eff}} = g a_0 \frac{\partial a}{\partial t} B_0 \]

Experimental approach

- Toroidal coil creates an azimuthal static magnetic field B_0
- Axion field $a(t)$ sources an azimuthal effective current J_{eff}
- J_{eff} generates an axial oscillating magnetic flux Φ_a
- Φ_a can be detected by a SQUID coupled to a pickup coil
- Similar to ABRACADABRA, but we use ferromagnetic core material to enhance B_0: $B_0 = H_0 + M$ (natural units)
- We tried two core materials: gadolinium-iron garnet (GdIG) and Fe-Ni alloy powder

$$a(t) = a_0 \sin (m_a t)$$

$$J_{\text{eff}} = g a \gamma \frac{\partial a}{\partial t} B_0$$

Experimental approach

- Toroidal coil creates an azimuthal static magnetic field B_0
- Axion field $a(t)$ sources an azimuthal effective current J_{eff}
- J_{eff} generates an axial oscillating magnetic flux Φ_a
- Φ_a can be detected by a SQUID coupled to a pickup coil

- Similar to ABRACADABRA, but we use ferromagnetic core material to enhance B_0: $B_0 = H_0 + M$ (natural units)

- We tried two core materials: gadolinium-iron garnet (GdIG) and Fe-Ni alloy powder

\[a(t) = a_0 \sin (m_a t) \]

\[J_{\text{eff}} = g a \gamma \frac{\partial a}{\partial t} B_0 \]

Experimental approach

- Toroidal coil creates an azimuthal static magnetic field B_0
- Axion field $a(t)$ sources an azimuthal effective current J_{eff}
- J_{eff} generates an axial oscillating magnetic flux Φ_a
- Φ_a can be detected by a SQUID coupled to a pickup coil
- Similar to ABRACADABRA, but we use ferromagnetic core material to enhance B_0: $B_0 = H_0 + M$ (natural units)
- We tried two core materials: gadolinium-iron garnet (GdIG) and Fe-Ni alloy powder

\[a(t) = a_0 \sin (m_a t) \]

\[J_{\text{eff}} = g a_\gamma \gamma \frac{\partial a}{\partial t} B_0 \]

Experimental approach

- Toroidal coil creates an azimuthal static magnetic field B_0
- Axion field $a(t)$ sources an azimuthal effective current J_{eff}
- J_{eff} generates an axial oscillating magnetic flux Φ_a
- Φ_a can be detected by a SQUID coupled to a pickup coil
- Similar to ABRACADABRA, but we use ferromagnetic core material to enhance B_0: $B_0 = H_0 + M$ (natural units)
- We tried two core materials: gadolinium-iron garnet (GdIG) and Fe-Ni alloy powder

\[a(t) = a_0 \sin(m_a t) \]

\[J_{\text{eff}} = g_{a\gamma\gamma} \frac{\partial a}{\partial t} B_0 \]

Experimental apparatus

Fe-Ni alloy powder core toroids:

- magnetizing coil
- pickup coil
- calibration loop
- permeability sensing coil

\[r = 24 \text{ mm}, \quad R = 39 \text{ mm}, \quad h = 16 \text{ mm} \]
SQUID magnetometers

SQUIDS from Magnicon GmbH (Germany)

Flux noise at 4 K: \(\approx 1 \mu\Phi_0/\sqrt{\text{Hz}} \)

Broadband readout circuit

\[\Phi_{\text{SQUID}} = \frac{N_p M_{\text{in}}}{L_p + L_{\text{tp}} + L_{\text{in}}} \Phi_a \]

\(M_{\text{in}} = 9 \, \text{nH}, \ L_{\text{in}} = 1.8 \, \mu\text{H}, \ L_p = 3 \, \mu\text{H} \)

Optimal number of turns: \(N_p = 6 \)
Magnetization measurements

Magnetizing coil

- **Current [A]**
 - Values: -10, -5, 0, 5, 10

- **Magnetic permeability**
 - Values: 10^-2, 10^-1, 10^0, 10^1, 10^2

Permeability sensing coil

- **B field [T]**
 - Values: 0, 1, 2

- **H field [A/m]**
 - Values: -8, -6, -4, -2, 0, 2, 4, 6, 8

Alexander Gramolin (Boston University)
Axion-like dark matter search using ferromagnetic toroids
DPF2019 — July 31, 2019
Magnetization measurements

![Graph of Magnetizing coil](image1)

![Graph of Permeability sensing coil](image2)

Magnetizing coil

- Magnetic permeability vs. Current [A]

Permeability sensing coil

- Inductance vs. Current [A]
Sensitivity scaling

- Axion flux scales with the static magnetic field and the toroid effective volume as

\[\Phi_a = g_{a\gamma\gamma} \sqrt{2\rho_{\text{DM}}} H_{\text{min}} V \]

- For 6 A current in the magnetizing coil:

\[H_{\text{min}} = 41 \text{ kA/m}, \quad V = 396 \text{ cm}^3 \]

- A factor of 30 enhancement compared to an air-core toroid \((V = 13.4 \text{ cm}^3)\)

- Sensitivity scales with the integration time, \(t\), as

\[
\text{sensitivity } \propto \begin{cases}
\sqrt{t}, & \text{if } t \ll \tau_c \text{ (coherent averaging)}, \\
\frac{4}{\sqrt{\tau_c}} t, & \text{if } t \gg \tau_c \text{ (incoherent averaging)},
\end{cases}
\]

where \(\tau_c\) is the axion coherence time \((\tau_c \approx 10^3 \text{ s for } f_a = 1 \text{ kHz})\)

Sensitivity scaling

- Axion flux scales with the static magnetic field and the toroid effective volume as
 \[\Phi_a = g_{a\gamma\gamma} \sqrt{2 \rho_{DM} H_{\text{min}}} V \]

- For 6 A current in the magnetizing coil:
 \[H_{\text{min}} = 41 \text{ kA/m}, \quad V = 396 \text{ cm}^3 \]

- A factor of 30 enhancement compared to an air-core toroid (\(V = 13.4 \text{ cm}^3\))

- Sensitivity scales with the integration time, \(t\), as
 \[
 \text{sensitivity} \propto \begin{cases} \sqrt{t}, & \text{if } t \ll \tau_c \text{ (coherent averaging)}, \\ \frac{4}{\sqrt{\tau_c}} t, & \text{if } t \gg \tau_c \text{ (incoherent averaging)}, \end{cases}
 \]

 where \(\tau_c\) is the axion coherence time (\(\tau_c \approx 10^3 \text{ s for } f_a = 1 \text{ kHz}\))

Sensitivity scaling

- Axion flux scales with the static magnetic field and the toroid effective volume as
 \[\Phi_a = g_{a\gamma\gamma} \sqrt{2\rho_{\text{DM}}} H_{\text{min}} V \]

- For 6 A current in the magnetizing coil:
 \[H_{\text{min}} = 41 \text{ kA/m}, \quad V = 396 \text{ cm}^3 \]

- A factor of 30 enhancement compared to an air-core toroid (\(V = 13.4 \text{ cm}^3 \))

- Sensitivity scales with the integration time, \(t \), as
 \[\text{sensitivity} \propto \begin{cases} \sqrt{t}, & \text{if } t \ll \tau_c \text{ (coherent averaging)}, \\ \frac{4}{\sqrt{\tau_c}} t, & \text{if } t \gg \tau_c \text{ (incoherent averaging)}, \end{cases} \]

 where \(\tau_c \) is the axion coherence time (\(\tau_c \approx 10^3 \text{ s for } f_a = 1 \text{ kHz} \))

Sensitivity scaling

- Axion flux scales with the static magnetic field and the toroid effective volume as
 \[\Phi_a = g_{a\gamma\gamma} \sqrt{2\rho_{\text{DM}}} H_{\text{min}} V \]

- For 6 A current in the magnetizing coil:
 \[H_{\text{min}} = 41 \text{ kA/m}, \quad V = 396 \text{ cm}^3 \]

- A factor of 30 enhancement compared to an air-core toroid (\(V = 13.4 \text{ cm}^3 \))

- Sensitivity scales with the integration time, \(t \), as
 \[\text{sensitivity} \propto \begin{cases} \sqrt{t}, & \text{if } t \ll \tau_c \text{ (coherent averaging)}, \\ \frac{4}{\sqrt[4]{\tau_c}} t, & \text{if } t \gg \tau_c \text{ (incoherent averaging)}, \end{cases} \]

 where \(\tau_c \) is the axion coherence time (\(\tau_c \approx 10^3 \text{ s} \) for \(f_a = 1 \text{ kHz} \))

\[D. \ Budker \ et \ al., \ Phys. \ Rev. \ X \ 4, \ 021030 \ (2014) \quad \text{— CASPER proposal} \]
Sensitivity reach of the experiment

\[\Phi_{\text{SQUID}} < \frac{1}{4} \frac{\mu \Phi_0}{\sqrt{\text{Hz}}} \frac{1}{\sqrt{\tau_c} t} \]

\[g_{a\gamma\gamma} < \frac{1}{4} \frac{\mu \Phi_0}{\sqrt{\text{Hz}}} \frac{1}{\sqrt{\tau_c} t} \times \frac{L_p + L_{tp} + L_{in}}{N_p M_{in}} \times \frac{1}{\sqrt{2 \rho_{DM} H_{\text{min}} V}} \]

\[\text{CAST (2017)} \]

1 day

10 days

\[\text{Axion coupling } g_{a\gamma\gamma} \text{ (GeV}^{-1}) \]

\[\text{Axion mass (eV)} \]

V. Anastassopoulos et al. (CAST Collaboration),

Nature Physics 13, 584 (2017)
Sensitivity reach of the experiment

\[\Phi_{SQUID} < \frac{1}{4} \frac{\mu \Phi_0}{\sqrt{\text{Hz}}} \frac{2^4}{\tau_c t} \]

\[g_{a\gamma\gamma} < \frac{1}{4} \frac{\mu \Phi_0}{\sqrt{\text{Hz}}} \frac{L_p + L_{tp} + L_{in}}{N_p M_{\text{in}}} \times \frac{1}{\sqrt{2 \rho_{DM} H_{\text{min}} V}} \]

V. Anastassopoulos et al. (CAST Collaboration), Nature Physics 13, 584 (2017)

arXiv:1811.03231
Summary and outlook

- Ultralight axion DM behaves like an oscillating classical field
- It generates an oscillating magnetic field in the presence of a static one
- Using SQUIDs we can search for axion DM in peV–neV mass range
- We enhance the static magnetic field with ferromagnetic toroidal cores
- Fe-Ni alloy powder cores provide a factor of 30 increase in sensitivity
- Projected sensitivity of the experiment surpasses the existing laboratory limits
- Work in progress: reduction of electromagnetic interference and data analysis
Summary and outlook

- Ultralight axion DM behaves like an oscillating classical field
- It generates an oscillating magnetic field in the presence of a static one
- Using SQUIDs we can search for axion DM in peV–neV mass range
- We enhance the static magnetic field with ferromagnetic toroidal cores
- Fe-Ni alloy powder cores provide a factor of 30 increase in sensitivity
- Projected sensitivity of the experiment surpasses the existing laboratory limits
- Work in progress: reduction of electromagnetic interference and data analysis

Thank you for your attention!