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Outline

• SuperCDMS SNOLAB
§ Design
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• Backgrounds
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§ Si-32 in natural silicon
§ Tritium from cosmic rays

• Summary

SuperCDMS Collaboration
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Experimental design, located at SNOLAB
CUTE

(early operations)

SuperCDMS SNOLAB

Low-radon
cleanroom

Radon
filter

Cryogenics
equipment

Chilled water
system

4 detector towers:     
12 HV detectors:        8 Ge + 4 Si
12 iZIP detectors:     10 Ge + 2 Si



4

Ge & Si solid-state cryogenic detectors

• High Voltage (HV) – Phonon-only 
measurement of ionization charge

• interleaved Z-dependent Ionization & 
Phonon (iZIP) – NR/ER discrimination

Athermal phonon sensor technology

Used on
both

detector
designs
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Sensitivity reach of SuperCDMS SNOLAB

• Direct detection search for spin-independent dark matter interactions
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Backgrounds overview

• Expected: Tritium, 32Si (only in Si), surface Rn daughters, material impurities

Spectra shown before detector resolution and application of single-scatter, fiducial volume, and nuclear recoil cuts

Ge Si
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Si-32: A naturally occurring background

• Measured by DAMIC collaboration in CCD detectors
§ DAMIC measurements to date:

ü 80 +110
-65 decays of 32Si / kg Si / day JINST 10 (2015) P08014

ü 11.5 +/- 2.4 decays of 32Si / kg Si / day G.C. Rich - IDM 2018 - 27 Jul 2018

Candidate Event

32Si beta
t½ ≈ 140 yr

32P beta
t½ = 14 days 
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Si-32: A naturally occurring background

• Si-32 is produced in atmosphere and enters silicon commodity stream

Silicon extraction & refining

Naturally occurring 32Si and low-background silicon dark matter detectors
Orrell, JL, et al. Astroparticle Physics 99 (2018) 9-20.
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Si-32: A naturally occurring background

• A low Si-32 source of silicon:
§ Deep underground mines?

ü Not commercially viable
ü Must develop independent Si processing

§ Avogadro project:
ü Goal: A pure 28Si kilogram standard
ü Employs enriched 28Si
ü Enrichment process removes 32Si
ü Existing silicon production chain exists

• Si-32 well below 8B solar n floor:
§ Production demonstrated at ~5 kg
§ Anticipate enrichment cost ‘modest’
§ Independent production chain critical

Avogadro project’s
purest 28Si
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Tritium from cosmic ray spallation

• Exposure of Ge & Si crystals to secondary cosmic rays (e.g., n, p, 𝜇)
causes nuclear spallation producing a variety of long-lived, unstable nuclei
§ Tritium (3H) is especially problematic: t½ = 12.3 yr, pure 𝛽-decay, 𝐸$%&' = 18.6 keV
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E. Armengaud et al.,
Astropart. Phys. 91 (2017) 51-64 

CDMSlite Run 2 (Soudan)

R. Agnese et al.,
Astropart. Phys. (2019) 1-12

MAJORANA DEMONSTRATOR

N. Abgrall et al.,
NIM A 877 (2018) 314-322
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Tritium from cosmic ray spallation

• SuperCDMS SNOLAB Goal: Less than 60 days sea level equivalent exposure
§ One of four towers is composed of iZIPs with longer surface exposure

Available on www.OSTI.gov

DOI: 10.2172/1424835Thank you
MAJORANA & GERDA!

Shielded shipping container
critical to meet exposure goal

Underground storage & polishing at
Stanford Underground Facility

Depth 25±2 meter water equivalent
Evaluated via attenuation formulation
employed by muon-tomographers Barbouti & Rastin

J. Phys. G 9 (1983)1577 

Ge polishingunderway
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Tritium from cosmic ray spallation

• Detectors currently moving to detector fabrication phase
§ Cosmic ray exposure minimization is on track with plan

Target exposure after detector fabrication

C
urrent

D
et. Fab.

Goal exposure: < 60 days sea level equivalent
We are on-track!

Bottom-up estimate of cosmic ray exposure
during detector fabrication, assembly, and testing

Days of effective sea level cosmic ray exposure
(shielding and elevation corrected)

Shipping route for
low cosmic ray

exposure
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Summary

• SuperCDMS searching for direct detection of low mass dark matter
§ Projected reach s ~ 10-43 cm2 at 1 GeV/c2 dark matter mass
§ Under construction now
§ Operation at SNOLAB in 2020

• Anticipated backgrounds: Tritium, 32Si, Rn daughters, material impurities
§ Developments during construction show paths to further reduction in the future
§ Highlighted background sources are of relevance to neutrinoless double beta decay

• Future detectors expected to probe yet lower mass dark matter candidates
§ Anticipate further R&D detector development in parallel with SuperCDMS construction
§ Developments will likely also improve sensitivity to 1-5 GeV/c2 dark matter candidates



Thank you
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