

Estimating Si-32 and tritium in the SuperCDMS SNOLAB detectors

July 2019

John L. Orrell Research Scientist

PNNL is operated by Battelle for the U.S. Department of Energy

SuperCDMS SNOLAB

- Design
- Detectors
- Sensitivity
- Backgrounds
 - Overview
 - Si-32 in natural silicon
 - Tritium from cosmic rays
- Summary

Experimental design, located at SNOLAB

CUTE

(early operations)

<u>4 detector towers</u>: 8 Ge + 4 Si 12 HV detectors: 10 Ge + 2 Si 12 iZIP detectors:

SuperCDMS SNOLAB

Cryogenics equipment

Radon filter

Ge & Si solid-state cryogenic detectors

• High Voltage (HV) – Phonon-only interleaved Z-dependent Ionization & measurement of ionization charge Phonon (iZIP) – NR/ER discrimination Charge electrode Luke Phonons ΔV **Recoil Phonons** Ge Al Collector quasiparticle W Transition- \odot Ο Edge Sensor 0 \bigcirc $(0 \circ)$

Sensitivity reach of SuperCDMS SNOLAB

• Direct detection search for spin-independent dark matter interactions

Backgrounds overview

• Expected: Tritium, ³²Si (only in Si), surface Rn daughters, material impurities

Spectra shown before detector resolution and application of single-scatter, fiducial volume, and nuclear recoil cuts

6

Si-32: A naturally occurring background

Measured by DAMIC collaboration in CCD detectors

- DAMIC measurements to date:
 - \checkmark 80 ⁺¹¹⁰₋₆₅ decays of ³²Si / kg Si / day

✓ 11.5 +/- 2.4 decays of ³²Si / kg Si / day G.C. Rich - IDM 2018 - 27 Jul 2018

JINST 10 (2015) P08014

Si-32: A naturally occurring background

• Si-32 is produced in atmosphere and enters silicon commodity stream

Si-32: A naturally occurring background

- A low Si-32 source of silicon:
 - Deep underground mines?
 - ✓ Not commercially viable
 - ✓ Must develop independent Si processing
 - Avogadro project:
 - ✓ Goal: A pure ²⁸Si kilogram standard
 - ✓ Employs enriched ²⁸Si
 - ✓ Enrichment process removes ³²Si
 - \checkmark Existing silicon production chain exists
- Si-32 well below ⁸B solar v floor:
 - Production demonstrated at ~5 kg
 - Anticipate enrichment cost 'modest'
 - Independent production chain critical

Tritium from cosmic ray spallation

- Exposure of Ge & Si crystals to secondary cosmic rays (e.g., n, p, μ) causes nuclear spallation producing a variety of long-lived, unstable nuclei
 - Tritium (³H) is especially problematic: $t_{\frac{1}{2}} = 12.3$ yr, pure β -decay, $E_{\beta}^{End} = 18.6$ keV

Tritium from cosmic ray spallation

- SuperCDMS SNOLAB Goal: Less than 60 days sea level equivalent exposure
 - One of four towers is composed of iZIPs with longer surface exposure

Thank you **MAJORANA & GERDA!**

Shielded shipping container critical to meet exposure goal

Tritium from cosmic ray spallation

- Detectors currently moving to detector fabrication phase
 - Cosmic ray exposure minimization is on track with plan

Bottom-up estimate of cosmic ray exposure during detector fabrication, assembly, and testing Days of effective sea level cosmic ray exposure (shielding and elevation corrected)

		Tower 1: GeiZIP	Towers 2-4: HV & iZIPs	
		[Batch A: 8 Ge]	[Batch B: 12 Ge, 8 Si]	
Fabrication Stage	Activity	Exposure (days)	Exposure (days)	
Boules & cut crystals	Production	N/A	5^{a}	
	Storage	≈500 [3 Ge], ≈700 [5 Ge]	0 ^b	
	Shipment	50	< 2 c	
Prepare crystals	Align/shape/polish	14 ^d	0 e	
Detector Fabrication	Lithography	25 f	8 <i>f</i>	
Tower assembly	Install in housing	3 ^g	3 ^g	
	300 mK test	6 ^g	0 h	
	Mounting tower	2^{g}	2^{g}	
Tower testing	Functional test	15 days × 3 = 45 g	7^{i}	
Shipment	SNOLAB delivery	7 ^j	7 ^j	
Total exposure		≈560 [3 Ge], ≈760 [5 Ge]	34	

Goal exposure: < 60 days sea level equivalent We are on-track!

Germanium crystal

Summary

- SuperCDMS searching for direct detection of low mass dark matter
 - Projected reach $\sigma \sim 10^{-43}$ cm² at 1 GeV/c² dark matter mass
 - Under construction now
 - Operation at SNOLAB in 2020
- Anticipated backgrounds: Tritium, ³²Si, Rn daughters, material impurities
 - Developments during construction show paths to further reduction in the future
 - Highlighted background sources are of relevance to neutrinoless double beta decay
- Future detectors expected to probe yet lower mass dark matter candidates
 - Anticipate further R&D detector development in parallel with SuperCDMS construction
 - Developments will likely also improve sensitivity to 1-5 GeV/c² dark matter candidates

Thank you

