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Axions solve strong-CP problem
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Axions as cold dark matter @

== AXION DARK MATTER EXPERIMENT

The classic QCD axion window is well-defined as the axion field after PQ
symmetry breaking (post-inflation) acts as a cold dark matter condensate.
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Astrophysical constraints give a target area for discovery!
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Direct Detection GALIMX

Solar system is moving at ~200km/s
through a dark matter halo with a
density of 0.3 — 0.5 GeV/cm3.

WIMP Wind
e

Axion searches look for the axion
field coherently interacting with a
sensitive apparatus

Suppressing backgrounds such as
electronic and thermal noise is key
In having sensitivity.

Phase coherent

\\ § ADMX over 10-3s or

100s of meters
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Axion Haloscope

== AXION DARK MATTER EXPERIMENT
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20+ yrs of ADMX
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= AXION DARK MATTER EXPERIMENT

The system temperature controls sensitivity and the scan rate
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ADMX Experiment ©LEIMX
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Second R&D Cavity: sidecar @2 MX
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Dilution refrigerator GLLIMX

Fridge Temperature (K)
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Month in Year

Stable operation for 2018 data taking

Dilution Refrigerator installed above
ADMX Cavity
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Cryogentic amplifiers ©ALLIMX

SQUID and JPA amplifiers enable low Tgystem = Terysicar + Taup
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Operations

== AXION DARK MATTER EXPERIMENT

Cavity frequency is scanned over a
region until the desired SNR.
Combined power spectrum
examined for signs of excess
Excess power can be statistical
fluctuations, synthetically injected
signals, RF interference, or axions
Excess power regions are
rescanned to see if they persist
Persistent candidates are subjected
to a variety of confirmation tests.
Ultimately a B2 dependence
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Synthetic Axion Signal

= AXION DARK MATTER EXPERIMENT
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Axion-shaped RF signal are periodically injected into the cavity, blind to the analysis.
Most signals are unblinded at the time of rescan to verify our detection efficiency.
Some (like this one) are not unblinded until the decision to ramp the magnet down.

Note much more data is required over a rescan-frequency than during the initial scan.
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First results Run 1A G&ALMX

| (107'® GeV™), 100% Dark Matter
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Results (Preliminary)! @221

Sidecar results at higher frequency.

Phys. Rev. Lett. 121 (2018) 261302
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New Results Run 1B @AM X
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After a persistent signal @2V

Confirmation (~minutes):
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Moving to higher frequencies @41
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Run 1C to 1GHz (in progress) @AM X
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Gen2 takes us to 2GHz ©ALIMX
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sapphire or metal tuning rods to cover to 2GHz
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ADMX, next steps GADMX
multicavity systems, new magnet? I
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Beyond 10 GHz: 6
Quantum Computing Technology T e e

Prototype for 10 GHz axion QND detector

100um

Lf,, 4 7 a4 LS ETF RS
Superconducting qubit in field-free
bucking coil region acts as an

amplitude—>frequency transducer for
QND measurements.

Qubit frequency shifts by 10 MHz per
photon deposited in axion cavity.
Successful “spin-flip” of qubit
confirms presence of cavity photon.

e N
25 mm

Akash Dixit, Aaron Chou, David Schuster (UC),
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Axion scattering
cavity dipped into
high B-field region




Conclusions OAIMX

ADMX for the first time has the necessary components to
probe the QCD axion that would solve the strong-CP problem
and could account for most of the dark matter in the universe

ADMX is now taking data at DSFZ sensitivity. None found yet!

ADMX is part of the DOE gen 2 dark matter program. Current
funding cycle allows probe up to about 2 GHz. Work with
multiple cavities to cover 2-4 GHz and perhaps up to 10 GHz

Above 10 GHz, new technologies such as those enabled by
quantum computing and high field magnets may result in
a definitive yes-no program on the existence of the axion

Nature may have a different surprise associated with dark
matter. There are new developments in applying new tool-
sets and creativity towards new experiments

W. Wester, Fermilab, Division of Particles and Fields, Boston July 2019
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