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Axions solve strong-CP problem
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Axions as cold dark matter
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The classic QCD axion window is well-defined as the axion field after PQ 
symmetry breaking (post-inflation) acts as a cold dark matter condensate.

Astrophysical constraints give a target area for discovery! 

If PQ is broken before
inflation, ultra-light
axions are possible.
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For the first time, science is 
seeking to discover the QCD axion – a

highly motivated particle which may solve the
Strong-CP problem and account for the Dark Matter.



A gen2 Dark Matter Experiment



Direct Detection
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Solar system is moving at ~200km/s
through a dark matter halo with a
density of 0.3 – 0.5 GeV/cm3.

Axion searches look for the axion
field coherently interacting with a
sensitive apparatus

Suppressing backgrounds such as
electronic and thermal noise is key
in having sensitivity.

Phase coherent
over 10-3s or
100s of meters

ADMX



Axion Haloscope
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Axions interact with B field photon in a
cavity converting into a detectable 
microwave photon. Resonant process
when the cavity is tuned to the energy
(i.e. KE of the axion). Scan vs. frequency.

Pierre Sikivie
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20+ yrs of ADMX
The system temperature controls sensitivity and the scan rate

2014



ADMX Experiment
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Second R&D cavity:  sidecar
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higher-mass cavity

Piezoelectric motors: 
nanometric positioning

main cavity



Dilution refrigerator
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Dilution Refrigerator installed above 
ADMX Cavity

Stable operation for 2018 data taking



Cryogentic amplifiers
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ADMX Tunable SQUID

ADMX JPA

SQUID and JPA amplifiers enable low TSYSTEM = TPHYSICAL + TAMP

Quantum noise limit 
is 48mK at 1GHz
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Operations
Cavity frequency is scanned over a 
region until the desired SNR.
Combined power spectrum 
examined for signs of excess 
Excess power can be statistical 
fluctuations, synthetically injected 
signals, RF interference, or axions
Excess power regions are 
rescanned to see if they persist
Persistent candidates are subjected 
to a variety of confirmation tests.
Ultimately a B^2 dependence
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Synthetic Axion Signal

Axion-shaped RF signal are periodically injected into the cavity, blind to the analysis.
Most signals are unblinded at the time of rescan to verify our detection efficiency.
Some (like this one) are not unblinded until the decision to ramp the magnet down.
Note much more data is required over a rescan-frequency than during the initial scan. 
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First results Run 1A

~30 MHz
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Results (Preliminary)!
Sidecar results at higher frequency.

Phys. Rev. Lett. 121 (2018) 261302
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New Results Run 1B

Now ~130 MHz total
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After a persistent signal
Confirmation (~minutes):
Does it behave as expected vs B2

Rule out all other sources -> discovery!

Axion Astronomy
Velocity and broadening of the line
Look for structure like infalls etc.
Annual modulation (~hr integration)

Via Lactea 2 simulation,

E.. Lentz, Ap. J (2017);
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Moving to higher frequencies
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Run 1C to 1GHz (in progress)
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Gen2 takes us to 2GHz

Prototype 1-2 GHz
prototype fabricated, 
tested

Run 2A to utilize a 4 cavity array with either
sapphire or metal tuning rods to cover to 2GHz
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ADMX, next steps
multicavity systems, new magnet?
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Discovery Potential 4-8 GHz resonators in 

design.  

This would be beyond
our currently approved 
funding. 
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Beyond 10 GHz:
Quantum Computing Technology
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Conclusions
ADMX for the first time has the necessary components to
probe the QCD axion that would solve the strong-CP problem
and could account for most of the dark matter in the universe

ADMX is now taking data at DSFZ sensitivity. None found yet!
ADMX is part of the DOE gen 2 dark matter program. Current
funding cycle allows probe up to about 2 GHz. Work with
multiple cavities to cover 2-4 GHz and perhaps up to 10 GHz

Above 10 GHz, new technologies such as those enabled by
quantum computing and high field magnets may result in
a definitive yes-no program on the existence of the axion
Nature may have a different surprise associated with dark 
matter. There are new developments in applying new tool-
sets and creativity towards new experiments
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