CAPP-8TB: Search for Axion Dark Matter in a Mass Range of 6.62 to 7.04 µeV

Soohyung Lee on behalf of the CAPP-8TB team
Center for Axion and Precision Physics Research
Institute for Basic Science
July 31, 2019

2019 Meeting of the Division of Particle and Fields of American Physical Society
Introduction to CAPP-8TB

- CAPP-8TB is an axion haloscope to search for axion dark matter in 6.62 - 7.04 µeV mass range
 - Corresponds to 1.6 - 1.7 GHz in frequency domain
 - Detects microwave photons produced via inverse Primakoff effect under an external magnetic field

- Scan rate with a microwave resonant cavity

\[
\frac{df}{dt} \propto \frac{B^4 V^2 C_{010}^2 Q_L}{T^2}
\]

- B: External magnetic field
- V: Cavity volume
- \(C_{010}\): Cavity form factor associated with TM_{010} mode
- \(Q_L\): Loaded quality factor of cavity
- T: System noise temperature

- In the 1st stage of CAPP-8TB, we will touch QCD axion band with commercial HEMT (high electron mobility transistor) based amplifiers
System Overview

• Microwave resonant cavity is maintained at a physical temperature of 50 mK
 ‣ BlueFors dilution refrigerator
 ‣ Cooling power of 16 µW at 20 mK

• External magnetic field is provided by a superconducting solenoid magnet
 ‣ Average magnetic field in the cavity volume: 7.3 T

• Receiver chain components are located at various temperature stages

• Frequency and coupling tuning is driven from stepping motors sitting at room temperature
Microwave Resonant Cavity

- Microwave resonant cavity as a detector is made of pure copper
 - Inner diameter: 134 mm, inner height: 236 mm
 - Inner volume: 3.5 L
- Capable to search 1.4 - 1.7 GHz frequency range with a dielectric tuning rod
 - Form factor of $TM_{010} > 0.5$
 - Unloaded quality factor $\sim 100,000$
Tuning Mechanism

• Resonant frequency and antenna coupling are tuned by stepping motors located at room temperature
 ‣ Driving forces are transmitted through shafts down to cavity
 ‣ Dielectric tuning rod \((\text{Al}_2\text{O}_3)\) is employed for frequency tuning
 - Since the axle of tuning rod is slightly off from the axle of driving shaft, a locomotive tuning mechanism is employed
 ‣ No mode-crossing for \(\text{TM}_{010}\) is found
Microwave Receiver Chain

- Microwave signals are transmitted through the receiver chain
 - 2 amplifiers in cryogenic environment and 2 more at room temperature (total system gain: ~133 dB)
 - Signals are down-converted to frequency centered at 70 MHz
 - System noise temperature: ~1 K
Data Acquisitions and Controls

- Data acquisitions and controls are governed by a home-grown software, CULDAQ
 - Various interfaces are supported (GPIB, RS232, USB, Ethernet, …)
 - Experiment is monitored via web interface (Grafana, …)
• From commissioning runs, we confirmed that the experiment is ready to go
 ‣ Frequency range of 1.60 - 1.65 GHz will be scanned first
 ‣ We may choose either 1.65 - 1.70 GHz or 1.55 - 1.60 GHz to scan depending on the cavity characteristics
Status and Plans

- Physics run has just started 5 days ago
 - As of today, we have scanned from 1600 to 1606 MHz
 - Expecting ~90 days of operation to reach QCD axion band within the frequency range of 1.60 - 1.70 GHz (or 1.55 - 1.65 GHz)

- In the 2nd stage of the experiment, quantum-limited noise amplifiers will be employed to reduce the system noise temperature → we will challenge KSVZ sensitivity
Summary

- CAPP-8TB is an axion haloscope to search mass range of 6.62 - 7.04 µeV
 - At a physical temperature of 50 mK under 7.3 T magnetic field
 - Pure copper resonant cavity with a dielectric tuning rod
 - Locomotive frequency tuning mechanism is managed by a home-grown DAQ software

- In the 1st stage, it will touch **QCD axion band with commercial HEMT amplifiers**
 - Successful commissioning runs
 - Physics run has just started, ~90 days operation expected

- In the 2nd stage, it will try **KSVZ sensitivity with quantum-limited noise amplifiers**