Dark Matter Indirect Detection with the GAPS Experiment

Mengjiao Xiao, MIT
07-30-2019
(On behalf of the GAPS Collaboration)
The GAPS Experiment

- **GAPS** = General Antiparticle Spectrometer, a balloon flight experiment.
 - Instruments size: ~3.7m x 3.7m x 3.7m
 - Flight from Antarctica.

- Use uniquely characterized atomic X-rays and charged particles from the decay of exotic atoms to identify cosmic anti-nuclei.

- Search for low energy (<0.25 GeV/n) antideuteron.
 - Probe various dark matter models.

- High statistics measurement of low energy antiproton and antihelium search.

- The first of a series of flight is expected for **late 2021**
Why Antideuteron as DM probe?

- **Primary flux**: DM annihilation/decay
 - Example: (decay) $m = 50$ GeV gravitino
 - $m_{\chi} = 40$ GeV astrophys. background

- **Secondary flux**: Cosmic ray interaction
 - Example: $p (CR) + H (ISM) \rightarrow p + H + p + n + \bar{p} + \bar{n}$
 - $CR =$ cosmic ray
 - $ISM =$ interstellar medium

- **Background free for DM searches at low energy range!**

Perez et al., Astro 2020 Decadal White Paper
GAPS Detection Principle

- **Time-of-Flight** system measures velocity, direction and dE/dx.
- Loses energy in layers of semiconducting silicon targets/detectors.
- Stops, forming *exotic excited atom*.
GAPS Detection Principle

➢ **Time-of-Flight** system measures velocity, direction and dE/dx.
➢ Loses energy in layers of semiconducting silicon targets/detectors.
➢ Stops, forming *exotic excited atom*.
➢ Atom de-excites, emitting *X-rays*.
➢ Remaining nucleus annihilates, emitting *pions* and *protons*.

Aramaki et al., Astroparticle Physics 74 (2016)
GAPS “Background” Rejection

- \bar{p} and \bar{d} selected by TOF system
- Antiparticle (\bar{p} / \bar{d}) identification:
 - Stopping range, dE/dx
 - Pion & proton multiplicity
 - Unique atomic X-rays

“Background” for antideuteron searches (\bar{p} mis-identification) rejection $>10^6$!

Aramaki et al., Astroparticle Physics 74 (2016)
GAPS Collaboration
GAPS Instrument Design

- **Time of Flight (TOF)**
 - High-speed trigger and veto.

- **Si(Li) Tracker**
 - X-ray identification
 - Stopping depth, dE/dx
 - Particle multiplicity
 - Vertex reconstruction

- **Thermal System**
 - Radiator
 - Oscillating heat pipe (OHP)

- **Series of long-duration (~30 days) balloon flights from Antarctica.**
 - Initial flight is scheduled in late 2021.
GAPS Instrument-TOF

1.6~1.8m

196 plastic scintillator

SiPMs x6

1.8m SiPM paddles

Item	Value	Comments
TOF resolution | \(\sigma_T < 400 \text{ ps} \) | Laboratory
Velocity resolution | \(\Delta \beta / \beta < 0.12 \) |
Charge resolution | \((\sigma_q)_{68\%} < 0.20e \) | Initial study
Position resolution | \(\sigma_x = 3.0 \text{ cm} \) (length)\(\sigma_y = 4.6 \text{ cm} \) (width) | Laboratory
Angular resolution | \(\sigma_\theta < 3^\circ \) (typical) | Simulations

Trigger principle:
- **Beta**: select slow particles.
- **Charge**: reject high Z particles.
- **Hit**: number of fired paddles.

Accept ~80% of anti-nuclei and suppress rate <500 Hz!

S. Quinn’s ICRC proceedings
GAPS Instrument-\textbf{Si(Li) Tracker}

- Large acceptance, total active area $>10 \ m^2$.
 - 10-cm diameter detectors
 - 10 layers, >1000 detectors.

- High operation temperature: resolution $<4 \ keV$ @ -35 to -43 C.

- Huge dynamic range:
 - $\sim keV \rightarrow 100 \ MeV$

- Low-cost and high-yield fabrication process.
GAPS Instrument—**Si(Li) Tracker**

Custom Si(Li) detectors: *(See F. Rogers contribution to particle detector session)*

- 10-cm diameter and 2.5 mm thickness
 - Absorption efficiency to capture \bar{d} up to 0.25 GeV/n
 - Escape fraction and efficiency for X-rays.

- 8 strips per detector
 - Tracking efficiency for incoming anti-nuclei and outgoing annihilation products.

- Achieved energy resolution <4 keV @ -35 C!

- Batch production by Shimadzu Corp. (Japan) ongoing.

- Readout via custom ASIC (pSLIDER-32), wire bonded with Si(Li) strips:
 - Integrated low-noise preamplifier.
 - 32 channels and 11-bit ADC.
 - Dynamic range: 20 keV to 50 MeV.

Rogers et al., arXiv:1906.00054
Kozai et al., arXiv:1906.05577
Perez et al., NIM A 905 12-21 (2018)
GAPS Instrument - **Thermal System**

- Design: Low power, low mass, semi-passive.
- Radiator + oscillating heating pipe (OHP)
 - Si(Li) detector cooling: local heating (≈100 W) + infra-red (IR) heat from surroundings (≈200 W) transferred to a radiator then to the space.
 - TOF system are insulated from Si(Li) and kept at moderate Temp by radiation-based thermal design.
- Scaled radiator model is validated on engineering flight (NASA SIFT), next flight test this Aug.-Oct.

References

Light WIMPs annihilating into $u\bar{u}$ for **MED** and **MAX** Galactic propagation scenarios

- Probes a variety of dark matter models that evade or complement collider, direct, or other cosmic-ray searches

TeV-scale WIMPs annihilating into $b\bar{b}$ and 500 GeV pure-Wino dark matter.
GAPS will measure >1000 antiprotons (E<0.25 GeV) in each long duration balloon flight.

- BESS: 29 at ~0.2 GeV
- PAMELA: 7 at ~0.25 GeV
- AMS-02: E>0.25 GeV

- Reduces systematic uncertainties for antideuteron search, both experimental and theoretical.

- Can probe light dark matter (e.g. decaying gravitino, LZP from extra-dimensional theories, primordial black holes).

- Optimizing for antihelium searches.

Aramaki et al., Astroparticle Physics 59 (2014) 12-17
Summary & Conclusions

- Comic-ray anti-nuclei provide a clean and complementary channel for dark matter detection.

- GAPS will sensitively search for low energy anti-nuclei using the novel exotic atomic technique.

- GAPS has made a good progress toward a first flight in late 2021, including a successful CDR in January 2019.

- Stay tuned!

DPF 2019, Jul. 29- Aug. 2, NEU MA
Thank you!
X-ray Yields of Antiprotonic Exotic Atom

Aramaki et al., Astroparticle Physics 49 (2013) 52-62

- X-ray yields for the antiprotonic exotic atom with Al and S targets were measured at KEK, Japan in 2005.

- Measurements are consistent with the calculations.