

Recent BESIII results on light hadrons

Isabella Garzia, University of Ferrara and INFN On behalf of the BESIII Collaboration

July 29 – August 2, 2019 Northeastern University BOSTON, MA

OUTLINE

- ✓ INTRODUCTION:
 - Light hadron spectroscopy
 - The BESIII experiment
- ✓ Physics highlights
 - X(18??) states
 - Preliminary result: Observation of X(2370) in $J/\psi \rightarrow \gamma KK\eta'$
 - Search for glueballs @ BESIII
 - $a_0(980)$ - $f_0(980)$ mixing
- ✓ Summary and Conclusions

Light Hadron Spectroscopy

... *but* QCD allows also different combinations of quarks and gluons: *EXOTIC* hadrons

A lot of exotic states observed experimentally, but their nature is still far from being understood!!!

Hadron spectroscopy: establish the spectrum and study the exotic hadrons properties

Hunting for Glueballs

Charmonium radiative decays provide the ideal laboratory for light glueballs and hybrids, due to the gluon-rich environment, and the the clean high statistics from e^+e^- annihilation

Prediction from LQCD

- 0^{++} ground state: ~ 1.5-1.7 GeV/c²
- 2^{++} first excited state: ~ 2.3 GeV/c²
- 0^{-+} state: ~ 2.3-2.6 GeV/c²

Glueballs can mix with ordinary quarkantiquark states

- The key problem is to identify those state with the dominant gluon component o Mg
- Predicted large BF for glueballs in J/ψ radiative decays

$$\Gamma(J/\psi \rightarrow \gamma G_{0^{++}})/\Gamma_{\rm tot} = 3.8(9) \times 10^{-3}$$

$$\frac{\Gamma(J/\psi \to \gamma G_{2^{++}})}{\Gamma_{\text{tot}}} = 1.1(2)(1) \times 10^{-2}$$

Beijing Electron Positron Collider II

http://english.ihep.cas.cn

The BESIII Detector

Nucl. Instr. Meth. A614, 345 (2010)

The BESIII data set

$J/\psi \rightarrow \gamma p\overline{p}$: threshold enhancement in $p\overline{p}$ mass

- Enhancement observed more than 15 years ago at BESII [PRL91,022001] and confirmed by CLEO-c [PRD82,092002] and BESIII [CPC 34, 421]
- Confirmed also in a PWA of the $J/\psi \rightarrow p\overline{p}\gamma$ channel
 - $J^{PC} = 0^{-+} (> 30 \sigma)$

$$M = 1832^{+19}_{-5}(\text{stat}) \,^{+18}_{-17}(\text{syst}) \pm 19(\text{model}) \, \text{MeV/c}^2$$

$$\Gamma < 76 \, \text{MeV} \textcircled{0} 90\% \, \text{C.L.}$$

$$R_{[J/\psi \to \gamma X] \times BR[X \to pp]} = (9.0^{+0.4}_{-1.1}(\text{stat})^{+1.5}_{-5.0}(\text{syst}) \pm 2.3(\text{model})) \times 10^{-5}$$

• No similar structure observed in related channels

What about its nature ? Final-State Interaction effect?

X(1835) (X($p\bar{p}$)?) $i \sqrt{J/\psi} \rightarrow \gamma \pi^- \pi^+ \eta$

- X(1835) was first observed at BES, and then confirmed at BESII [PRL95,262001]
- Two additional structures observed at BESIII
- Many interpretation: $p\overline{p}$ bound state? Glueballs? Radial excitation of the η ' meson
- BESIII J/ $\psi \rightarrow \gamma \pi^- \pi^+ \eta^2$: PRL **106**, 072002 (2011)
 - 225M J/ ψ events
 - $\eta' \rightarrow \gamma \pi^- \pi^+$ and $\eta' \rightarrow \eta_{\gamma\gamma} \pi^- \pi^+$
 - 4 resonances (BW \otimes Gauss)+non-resonant $\eta' \pi^- \pi^+$ (from MC) + non- η' and $\pi^- \pi^+ \pi^0 \eta'$ bkgs
- Also seen in $J/\psi \rightarrow \gamma K_{S}^{0} K_{S}^{0} \eta$ which provides a very clear environment: PRL **115**, 091803 (2015)
 - $K_{S}^{0}K_{S}^{0}\eta$ and $\pi^{0}K_{S}^{0}K_{S}^{0}\eta$ bkgs are forbidden by exchange symmetry and CP conservation
 - Partial Wave Analysis (PWA) of events with $M(K_{S}^{0}K_{S}^{0}) < 1.1 \text{ GeV/c}^{2} \text{ and } M(K_{S}^{0}K_{S}^{0}\eta) < 2.8 \text{ GeV/c}^{2}$
 - $J^{PC} = 0^{-+} (>12.9\sigma)$

Connection between X(1835) and $X(p\overline{p})$

The study of the $\eta' \pi^- \pi^+$ line shape at the $p\overline{p}$ threshold with high statistical precision provides valuable information on the X(1835) and X($p\overline{p}$) nature

- $1.09 \times 10^9 \text{ J/}\psi$ events collected in 2012
- $\eta' \rightarrow \gamma \pi^- \pi^+$ and $\eta' \rightarrow \eta_{\gamma\gamma} \pi^- \pi^+$

PRL 117, 042002 (2016)

Significant distortion of the $\eta' \pi^- \pi^+$ line shape near the pp mass threshold

- The two models used to describe the data give almost equal fit quality
- Both fits support the existence of one of
 - a $p\overline{p}$ molecule-like state (broad state)
 - an unconventional meson, most likely a $p\overline{p}$ bound state (narrow state)

Search for X(1835) in other decay modes

• $J/\psi \rightarrow \omega \eta' \pi^+ \pi^-$ hadronic decay and search for $X(1835) \rightarrow \eta' \pi^+ \pi^-$

PRD **99**, 071101 (R) (2019)

- No obvious sign of X(1835)'s existence
- Large gluon component? [PRD74,034019]

$$\mathcal{B}(J/\psi \to \omega \eta' \pi^+ \pi^-) = (1.12 \pm 0.02 \pm 0.13) \times 10^{-3}$$

$$\mathcal{B}(J/\psi \to \omega X(1835), \ X(1835) \to \eta' \pi^+ \pi^-) < 6.2 \times 10^{-5}$$

• $J/\psi \rightarrow \gamma \gamma \phi$: two structures corresponding to $\eta(1475)$ and X(1835) are observed

• Sizable ss component: more complicated than a pure NN state

More states between 1.8-1.9 GeV/c² @ BESIII

Observation of X(2370) in $J/\psi \rightarrow \gamma KK \eta'$

- The X(2120) and X(2370) states observed in the $\pi^-\pi^+\eta'$ invariant mass spectra $(J/\psi \rightarrow \gamma \pi^-\pi^+\eta')$ PRL160,072002)
- Possible glueball candidates
- A simulataneus fit is performed on all the four decay modes:
 - $\checkmark J/\psi \rightarrow \gamma K^{-}K^{+}\eta'$ $\checkmark \eta' \rightarrow \pi^{-}\pi^{+}\eta/\pi^{-}\pi^{+}\gamma$ $\checkmark J/\psi \rightarrow \gamma K_{S}^{0}K_{S}^{0}\eta'$ $\checkmark \eta' \rightarrow \pi^{-}\pi^{+}\eta/\pi^{-}\pi^{+}\gamma$
- Clear X(2370) signal observed with significance of about 7.6σ
- ➢ No evidence of X(2120) is found → U.L. @ 90% C.L.
- No spin-parity assignment

Amplitude Analyses in BESIII

- J/ ψ radiative decays are ideal for searching glueballs
 - $J/\psi \rightarrow \gamma PP: 0^{++}, 2^{++}, \dots$
 - $J/\psi \rightarrow \gamma PPP$, γVV : 0^{-+}
- Neutral channel is much cleaner than the charged ones
- Very complicated mass spectrum in the low mass region: many broad, overlapping states complicate the study of the spectra
- Amplitude analysis: toll to extract the complex amplitudes from experimental data
 - Models with free parameters
 - Consider the kinematic of final states particles
 - Vary the parameters to maximize the likelihood
 - Mass Dependent (MD) PWA: model the dynamics of particle interactions as coherent sum of resonances
 - Mass Independent (MI) PWA: make minimal model assumptions and measure the dynamical amplitudes independently in small regions of two-meson invariant mass (PRD92, 052003 (2015))

PWA of J/ψ \rightarrow γηη

- J/ $\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on $2.25 \times 10^8 \text{ J/}\psi$ events

Isabella Garzía - University of Ferrara and INFN

PRD 87, 092009 (2013)

 \mathcal{PWA} of $J/\psi \rightarrow \gamma \eta \eta$

- $J/\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states
- PWA based on $2.25 \times 10^8 \text{ J/}\psi$ events

esonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
(1500)	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) imes 10^{-5}$	8.2σ
₀ (1710)	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) imes 10^{-4}$	25.0σ
₀ (2100)	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) imes 10^{-4}$	13.9σ
2(1525)	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) imes 10^{-5}$	11.0σ
2(1810)	$1822\substack{+29+66\\-24-57}$	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) imes 10^{-5}$	6.4σ
2(2340)	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) imes 10^{-5}$	7.6 <i>o</i>

- $f_0(1500)$ dominant decays are 4π and $\pi\pi$
- The production rate of $f_0(1710)$ is compatible with LQCD (PRL110,021601) prediction for a pure scalar glueball
 - Suggest a large overlap with 0++ gluball
- PWA requires a strong contribution from f₂(2340) with fairly large production rate ⇒ it could be a good candidate for the lowest lying tensor glueball

PRD 87, 092009 (2013)

J/ $\psi \rightarrow \gamma \eta \eta$: clean laboratory to search for 0++ and 2++ states

• PWA based on $2.25 \times 10^8 \text{ J/}\psi$ events

- $\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$ $f_0(1500)$ 8.2σ $f_0(1710)$ 10 25.0σ $f_0(2100)$ **10**-4 13.9σ 6.4σ f₂'(1525) 7.6σ f₂(1810) $(5.40^{+0.60+3.42}_{-0.67-2.25}) \times 10^{-5}$ $f_2(2340)$ $(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$
- $f_0(1500)$ dominant decays are 4π and $\pi\pi$
- The production rate of $f_0(1710)$ is compatible with LQCD (PRL110,021601) prediction for a pure scalar glueball
 - Suggest a large overlap with 0++ gluball
- PWA requires a strong contribution from f₂(2340) with fairly large production rate ⇒ it could be a good candidate for the lowest lying tensor glueball

PRD 87, 092009 (2013)

$\mathcal{PWA} \text{ of } J/\psi \rightarrow \gamma \mathcal{K}^{O}{}_{S}\mathcal{K}^{O}{}_{S}$

- $J/\psi \rightarrow \gamma K_S K_S$: clean laboratory to search for even++ states
- PWA based on 1311M of J/ψ events

Resonance	$M ({\rm MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	Γ (MeV/ c^2)	$\Gamma_{\rm PDG}~({\rm MeV}/c^2)$	Branching fraction	Significance
K*(892)	896	895.81 ± 0.19	48	47.4 ± 0.6	$(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$	35σ
$K_1(1270)$	1272	1272 ± 7	90	90 ± 20	$(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$	16σ
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	1200 to 1500	$231 \pm 21^{+28}_{-48}$	200 to 500	$(1.07^{+0.08+0.36}_{-0.07-0.34}) \times 10^{-5}$	25σ
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$	23σ
$f_0(1710)$	$1765 \pm 2^{+1}_{-1}$	1723^{+6}_{-5}	$146\pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870\pm7^{+2}_{-3}$		$146 \pm 14^{+7}_{-15}$		$(1.11^{+0.06+0.19}_{-0.06-0.32}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	2189 ± 13	$364\pm9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08+0.17}_{-0.06-0.47}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(2330)$	$2411\pm10\pm7$		$349 \pm 18^{+23}_{-1}$		$(4.95^{+0.21+0.66}_{-0.21-0.72}) \times 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08+0.59}_{-0.09-0.20}) imes 10^{-5}$	33σ
$f_2'(1525)$	1516 ± 1	1525 ± 5	$75\pm1\pm1$	73^{+6}_{-5}	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345_{-40}^{+50}	$507\pm37^{+18}_{-21}$	322_{-60}^{+70}	$(5.54^{+0.34+3.82}_{-0.40-1.49}) imes 10^{-5}$	26σ
0 ⁺⁺ PHSP					$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$	26σ
2 ⁺⁺ PHSP					$(5.73^{+0.99+4.18}_{-1.00-3.74}) \times 10^{-5}$	13σ

5000

- $f_0(1710)$ and $f_0(2200)$ dominate the scalar spectrum, but we need also to include $f_0(2330)$
- BR of $f_0(1710)$ is one order of magnitude larger than BR of $f_0(1500)$: $f_0(1710)$ overlap with glueball state
- Structure near 1.5 GeV dominated by tensor contribution f_2 '(1525), while above 2 GeV is dominantly f_2 (2340)

PRD 98, 072003 (2018)

$\mathcal{PWA} \text{ of } J/\psi \rightarrow \gamma \mathcal{K}^{O}{}_{S}\mathcal{K}^{O}{}_{S}$

- Mass independent PWA results
 - Amplitudes extracted independently in bins of $K_S K_S$ invariant mass

- Agreement with results from MD PWA (no acceptance correction included)
- MI results useful for a systematic study of hadronic interaction

PRD 98, 072003 (2018)

PWA status and plans in a nutshell

- 0++: the production rate $f_0(1710)$ is compatible with LQCD prediction for a pure gauge scalar glueball
- 2++: f₀(2340) seems to be a good candidate for tensor gluball [PRL111,091601] (large production rate)
- $0-+: \eta(2225)$ is confirmed and two additional pseudoscalar states, $\eta(2100)$ and X(2500), are observed

$a_0(980)$ - $f_0(980)$ mixing

PRL **121**, 022001(2018)

 $1^{-}(0^{++})$ $0^{+}(0^{++})$

- $a_0(980) f_0(980)$ still controversial explanation about their nature
- Direct measure of the $f_0(980) a_0(980)$ mixing in the process proposed in 1979 [PLB88,367] $J/\psi \rightarrow \phi f_0(980) \rightarrow \phi a_0^0(980) \rightarrow \phi \eta \pi^0$ and $\chi_{c1} \rightarrow \pi^0 a_0^0(980) \rightarrow \pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$ (isospin violating decays)

Isabella Garzía - University of Ferrara and INFN

$a_0(980) \cdot f_0(980)$ mixing

Conclusions

- BESIII is successfully operating since 2008, and continues to take data
 - This year, <u>BESIII has collected about 4.6 billion of new J/ψ data</u>, which will be analysed soon

<u>total statistics of 10 billion of J/ ψ data \searrow </u>

- <u>Excellent laboratory to study hadron spectroscopy</u>, complementary to scattering and photon production experiments
 - High statistics
 - Low backgrounds
- Extensive and systematic searching for glueballs: $f_0(1710)$, $f_2(2340)$, X(2370), X(2500), and X(26??), ...
- First observation of $a_0(980)$ - $f_0(980)$ mixing. Many unexpected/interesting phenomena: narrow $f_0(980)$, large isospin breaking rate, ...
- Many interesting results have been obtained, and only a small part are covered in this talk

FUTURE

- More data will be collected
- Detector and BEPCII upgrade

• .

Back-up slídes

BESIII physics programme

Light hadron physics

- Meson and baryon spectroscopy
- Multiquark states
- Threshold effects
- Glueballs and hybrids
- two-photon physics
- Form factors

QCD and τ

- Precision R measurement
- τ decay

Charmonium physics

- Precision spectroscopy
- Transitions and decays

XYZ meson physics

- Y(4260), Y(4360) properties
- Z_c(3900)⁺, ...

Charm physics

- Semi-leptonic form factors
- Decay constants f_D and f_{Ds}
- CKM matrix: $|V_{cd}|$ and $|V_{cs}|$
- $D^0 \overline{D}^0$ mixing, CPV
- Strong phases

Precision mass measurements

- τ mass
- D, D^{*} mass

Study of $J/\psi \rightarrow \eta \phi \pi^+\pi^-$

BESIII: PRD**91**,052017

- Unbinned maximum likelihood fit is performed to the $\phi f_0(980)$ invariant mass distribution
- No interference between Y(2175) and direct three-body decay of $J/\psi \rightarrow \eta \phi f_0(980)$
- Y(2175) resonance observed with a significance greater than 10σ

$$M=2200 \pm 6 \pm 5 \text{ MeV/c}^2$$
, $\Gamma = 104 \pm 15 \pm 15 \text{ MeV}$

ηππ mass spectrum recoiling against the ϕ :

- Fit includes contributions from the $f_1(1285)$ and $\eta(1405)$ signals, the $J/\psi \rightarrow \eta \phi \pi \pi$ decay, and backgrounds from non- η and non- ϕ processes
- No evidence of X(1835) and X(1870) states

 $\mathcal{B}(J/\psi \rightarrow \phi f_1 \rightarrow \phi \eta \pi \pi) = (1.20 \pm 0.06 \pm 0.14) \times 10^{-4}$ $\mathcal{B}(J/\psi \rightarrow \phi \eta (1405) \rightarrow \phi \eta \pi \pi) = (2.01 \pm 0.58 \pm 0.82) \times 10^{-5}$

ppbar enhancement in other reactions

20

0

0

50

100

150

 $\Delta M = M(p\overline{p}) - 2m_{o} (MeV/c^{2})$

200

250

300

- Enhancement also seen in other B decays •
- FSI? Sub-threshold resonance? •
- Not enough statistic to draw any conclusion ٠

Final State interaction [NPA 929, 102]

Final State interaction [A. Milstein, PhiPsi2017, Maitz]

Predictions for the cross section of $e^+e^- \rightarrow N\bar{N}$ near the threshold

Left: the cross sections of $p\bar{p}$ (red line) and $n\bar{n}$ (green line) production, Right: G_E^p/G_M^p for proton. The experimental data are from J.P.Lees et al., BaBar, Phys.Rev. D 87, 092005 (2013), R.R. Akhmetshin et al., CMD3, Physics Letters B759, 634 (2016) M.N. Achasov et al.,SND, Phys. Rev. D 90, 112007 (2014).

 $J/\psi, \, \psi(2S) \rightarrow p \bar{p} \gamma \text{ decay}$

The invariant mass spectra in $J/\psi(\psi(2S) \rightarrow p\bar{p}\gamma$ decays:

Isabella Garzía - University of Ferrara and INFN

Left: $J/\psi \to p\bar{p}\gamma$ decay. Right: $\psi(2S) \to p\bar{p}\gamma$ decay.

Connection between X(1835) and X(pp): Fit results I

 Simple BW function fails in describing the η 'π⁻π⁺ line shape near the threshold

MODEL 1

Threshold structure caused by the opening of additional decay mode

- Flatté formula for the shape (Phys.Lett.B63, 224)
- An additional BW resonance (X(1920)) is needed (5.7 σ)

MODEL 2

Interference between two resonances

- Use coherent sum of two
 BW amplitudes for the line
 shape: X(1835) and a
 narrow resonance called
 X(1870)
- X(1920) not significant

Connection between X(1835) and X(pp): Fit results II

TABLE I. Fit results of using the Flatté formula. The first errors are statistical errors, and the second errors are systematic errors; the branching ratio is the product of $\mathcal{B}(J/\psi \to \gamma X)$ and $\mathcal{B}(X \to \eta' \pi^+ \pi^-)$.

The state around 1.85 GeV/ c^2				
$\overline{\mathcal{M}}$ (MeV/ c^2)	$1638.0 \pm 121.9^{+127.8}_{-254.3}$			
$g_0^2 [(\text{GeV}/c^2)^2]$	$93.7 \pm 35.4^{+47.6}_{-43.9}$			
$g_{p\bar{p}}^2/g_0^2$	$2.31 \pm 0.37 \substack{+0.83 \\ -0.60}$			
$M_{\rm pole}~({\rm MeV}/c^2)$	$1909.5 \pm 15.9^{+9.4}_{-27.5}$			
$\Gamma_{\rm pole} ({\rm MeV}/c^2)$	$273.5 \pm 21.4^{+6.1}_{-64.0}$			
Branching ratio	$(3.93 \pm 0.38^{+0.31}_{-0.84}) \times 10^{-4}$			

Isabella Garzía - University of Ferrara and INFN

TABLE II. Fit results using a coherent sum of two Breit-Wigner amplitudes. The first errors are statistical errors, and the second errors are systematic errors; the branching ratio (B.R.) is the product of $\mathcal{B}(J/\psi \to \gamma X)$ and $\mathcal{B}(X \to \eta' \pi^+ \pi^-)$.

A(1855)	
Mass (MeV/c^2)	$1825.3 \pm 2.4^{+17.3}_{-2.4}$
Width (MeV/ c^2)	$245.2 \pm 13.1 \substack{+4.6 \\ -9.6}$
B.R. (constructive interference)	$(3.01 \pm 0.17^{+0.26}_{-0.28}) \times 10^{-4}$
B.R. (destructive interference)	$(3.72 \pm 0.21^{+0.18}_{-0.35}) \times 10^{-4}$

X(1870)

V(1025)

Mass (MeV/ c^2)	$1870.2 \pm 2.2^{+2.3}_{-0.7}$
Width (MeV/ c^2)	$13.0 \pm 6.1^{+2.1}_{-3.8}$
B.R. (constructive interference)	$(2.03 \pm 0.12^{+0.43}_{-0.70}) \times 10^{-7}$
B.R. (destructive interference)	$(1.57 \pm 0.09^{+0.49}_{-0.86}) \times 10^{-5}$

X(1835) $i N J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

BESIII: PRL115,091803

 $J/\psi \rightarrow \gamma K^0{}_S K^0{}_S \eta$ provides a clear environment

- $K_{S}^{0}K_{S}^{0}\eta$ and $\pi^{0}K_{S}^{0}K_{S}^{0}\eta$ bkgs are forbidden by exchange symmetry and CP conservation
- $1.3 \times 10^9 \text{ J/}\psi$ events
- (a) Structure around 1.85 GeV/c^2
- (b) Strong enhancement near the $K_{S}^{0}K_{S}^{0}$ threshold interpreted as the $f_{0}(980)$
- (c) Strong correlation between the $f_0(980)$ and the structure near 1.85 GeV/c²
- (d) M(K⁰_SK⁰_S)<1.1 GeV/c² → the structure near 1.85 GeV/c² became more pronounced

PWA of events with $M(K_{S}^{0}K_{S}^{0})<1.1 \text{ GeV/c}^{2}$ and $M(K_{S}^{0}K_{S}^{0}\eta)<2.8 \text{ GeV/c}^{2}$

 $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$: PWA results

BESIII: PRL115,091803

Final fit results: the data can be best described with three components: $X(1835) \rightarrow f_0(980)\eta$, $X(1560) \rightarrow f_0(980)\eta$, and a non-resonant $f_0(1500)\eta$ component

- The X(1560) component improves the fit quality when interference with the X(1835) is allowed
- Several fits with different J^{PC} hypothesis
- $J^{PC} = 0^{++}$ for X(1835), X(1560), and nonresonant component
- J^{PC} = 1⁺⁺ for non-resonant component cannot be excluded

Mass and width of X(1835) consistent with PRL106

 $M = 1844 \pm 9 \text{ (stat)} {}^{+16}_{-25} \text{(syst)} \text{ MeV/c}^2 \quad \Gamma = 192^{+20}_{-17} \text{(stat)} {}^{+62}_{-43} \text{(syst)} \text{ MeV} \quad (>12.9 \, \sigma)$ $BR = (3.3^{+0.33}_{-0.30} \text{(stat)} {}^{+1.96}_{-1.29} \text{(syst)}) \times 10^{-5}$

 $M = 1565 \pm 8 \text{ (stat)}^{+0}_{-63} \text{(syst) MeV/c}^2 \quad \Gamma = 45^{+14}_{-13} \text{(stat)}^{+21}_{-28} \text{(syst) MeV} \quad (>8.9 \text{ } \sigma \text{)}$ Isabella Garzia - University of Ferrara and INFN

 $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$: PWA results

Isabella Garzía - University of Ferrara and INFN

Observation of $e+e \rightarrow \eta Y(2175) \otimes \sqrt{s} > 3.7 \text{ GeV}$

- The Y(2175) (φ(2170) in the PDG) was observed by BaBar (PRD74, 091103(2006)), and confirmed by Belle (PRD80,031101(2009)) and BESIII
- Y(2175) is regared as strangeonium-like state
 - Candidate for a tetraquark state, a strangeonium hybrid state, or a conventional ss state
- Search for Y(2175) resonance in the process $e^+e^- \rightarrow \eta \phi f_0(980)$ using data collected at the center-of-mass energies between 3.7 and 4.6 GeV
- The simultaneous fit result to all data sample give a statistical significance larger than 10σ
- ► In analogy with the Y(4260) and Y(10860), the Y(2175) represents a unique place to search for Z_s state in $\phi \pi^{\pm}$ spectrum
 - > no significant signal is observed
- ➤ No significant $\psi(3686) \rightarrow \eta Y(2175)$ signal observed
- No signicant $e^+e^- \rightarrow \eta' Y(2175)$ signal observed

Isabella Garzía - University of Ferrara and INFN

arXiv:1709.04323 (submitted to PRD)

Observation of $e+e \rightarrow \eta Y(2175) \otimes \sqrt{s} > 3.7 \text{ GeV}$

Isabella Garzía - University of Ferrara and INFN

Search for ZS @ $\sqrt{s} = 2.125$ GeV

arXiv:1801.10384(2018) – PRD 99, 011101(R), (2019)

Isabella Garzía - University of Ferrara and INFN

Search for $Z_S @ \sqrt{s} = 2.125 \text{ GeV}$

arXiv:1801.10384(2018) – submitted to PRL

- We search for Z_s a strangeonium-like structure via $e^+e^- \rightarrow \phi \pi^+\pi^-(\phi \pi^0 \pi^0)$ using 108 pb⁻¹ of data collected at $\sqrt{s} = 2.125$ GeV
 - Structure expected around the K^{*}K threshold (1.4 GeV/ c^2) in the $\phi\pi$ invariant mass

+ Z_S component

 $M = (1.2-1.95) \text{ GeV/c}^2$

 \succ Γ : steps of 0.05 GeV

 \succ J^P = 1⁺ and 1[−]

Only S-wave

contribution

• PWA analysis performed

Four subprocesses considered:

> φσ

 \geq

- $\succ \phi f_0(980)$
- $\blacktriangleright \phi f_0(1370)$
- $\succ \phi f_2(1270)$

 Non-φ bkg from φ sidebands (non-interfering term)

- on-interfering term)
- No clear Z_s signal is observed: • Maximum local significance = 3.3σ at $M(Z_s)$ =
 - 1.55 GeV/ c^2 and $\Gamma(Z_s) = 50$ MeV 90% C.L. upper limit on the cross section for Z_s
 - production are determined
 - More data to check for the single pion emission mechanism (ISPE)
- \succ σ(e⁺e⁻→ ϕ π⁺π⁻) = (343.0±5.1±25.1) pb
- $\sigma(e^+e^- \rightarrow \phi \pi^0 \pi^0) = (208.3 \pm 7.6 \pm 13.5) \text{ pb}$

Within 30 from BaBar (PRD86,012008) and Belle (PRD80, 031101)

FIG. 4. The statistical significance of the signal scanned in the two-dimensional space of $g_{a_0K^+K^-}$ and $g_{f_0K^+K^-}$. The regions with higher statistical significance indicate larger probability for the emergence of the two coupling constants. The markers indicate predictions from various illustrative theoretical models.