

Studies of Baryon Form Factors at BESIII

Samer Ahmed::Isabella Garzia on behalf of the BESIII Collaboration

July 29th - August 2nd, 2019

Boston, US

< □ > < 同 > < 回 > < 回 >

Outline

- Introduction to the electromagnetic form factors
- Introduction to the BESIII experiment
- Measurements of the electromagnetic form factors of baryon
 - Proton form factors
 - Hyperon form factors
 - Charmed hyperon form factors
- Summary

イロト イヨト イヨト イヨト

Electromagnetic Form Factors

- Baryons are non-point like particles and their structures and dynamics can be described :
 - Electromagnetic form factors
 - Parton Distribution Functions
 - Generalized Parton Distributions
 - ..

By performing a global analysis on the data from scattering and annihilation experiments, one can determine these functions and well understand the structure of baryon.

Electromagnetic Form Factors:

- Form Factors characterize the internal structure and dynamics of baryons:
 - At low q2: they are related to the charge and magnetization distributions inside the baryons and hence probe the size of the baryons (nucleon).
 - In the limit of q2 goes to 0: determine the charge radius of the baryons.
 - At high q2: improve our understanding of QCD and testing its scaling.
- The electromagnetic structure of a particle of spin S is described by 2S + 1 form factors.

Electromagnetic Form Factors

Sachs Form Factors:

• Combination of Pauli and Dirac FFs leads to the so called Sachs FFs:

$$G_E = F_1(q^2) + (q^2/4M^2)F_2(q^2)$$

$$G_M = F_1(q^2) + F_2(q^2)$$

How experimentally the Form Factors are determined?

• The unphysical region can be accessed via $p\bar{p} \rightarrow e^+e^-\pi^0$.

Elastic scattering

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \omega_2 \cos^2 \frac{\theta_e}{2}}{4\omega_1^3 \sin^4 \frac{\theta_e}{2}} \left[G_E^2 - \tau \left(1 + 2(1 - \tau) \tan^2 \frac{\theta_e}{2} \right) G_M^2 \right] \frac{1}{1 - \tau} \tau = \frac{q^2}{4M_N^2}$$
Annihilation

$$\frac{d\sigma}{d\sigma} = \frac{\alpha^2 \beta C}{4\omega_1^2 \sin^2 \theta_2} \left[G_E^2 - \tau \left(1 + 2(1 - \tau) \tan^2 \frac{\theta_e}{2} \right) G_M^2 \right] \frac{1}{1 - \tau} \tau = \frac{q^2}{4M_N^2}$$

$$\frac{\theta_0}{d\Omega} = \frac{1}{4q^2} \begin{bmatrix} (1+c) \\ 1+c \end{bmatrix}$$
Samer Ahmed (Helmholtz-Institut Mainz) Ele

 $-\theta_{o}$

 τ

Electromagnetic Form Factors in Time-Like Region

Direct Scan Method:

- Beam energy is discrete.
- Luminosity is relatively small.

$$\begin{aligned} \frac{d\sigma_{p\bar{p}}}{d(\cos\theta)} &= \frac{\alpha^2 \beta C}{4q^2} [|G_M|^2 (1 + \cos^2\theta) \\ &+ \frac{4m_p^2}{q^2} |G_E|^2 \sin^2\theta] \end{aligned}$$

• q² is single at each beam energy.

Initial State Radiation Method:

- Beam energy is fixed.
- Luminosity is relatively high.

$$\begin{array}{l} \frac{d^2\sigma_{p\overline{p}\gamma}}{dq^2d\theta_{\gamma}} = \frac{1}{s}W(s,x,\theta_{\gamma})\sigma_{p\overline{p}}(q^2) \\ W(s,x,\theta_{\gamma}) = \frac{\alpha}{\tau x}(\frac{2-2x+x^2}{\sin^2\theta_{\gamma}} - \frac{x^2}{2}) \end{array}$$

• q^2 is continuous from threshold to s.

BEPCII & BESIII Detector

メロト メタト メヨト メヨト

Beijing Electron Positron Collider II (BEPCII)

Beijing Electron Positron Collider II and BESIII Detector

Nucl. Instr. Meth. A614, 345 (2010)

イロト イヨト イヨト イヨト

BESIII Data Sets and Physics Program

Samer Ahmed (Helmholtz-Institut Mainz)

30.07.2019 10 / 25

Status of the Nucleon Form Factors at BESIII

メロト メタト メヨト メヨト

Measurements of proton form factors at BESIII

BESIII results on the $p\bar{p}$ cross section and effective form factors

- Direct scan method:
 - 2012 data, 156.7 pb⁻¹, PRD 91, 112004 (2015);
 - 2015 data, 668.5 pb⁻¹, arXiv:1905.09001 \implies most recent and precise results.
- Initial state radiation method:
 - Untagged analysis: data at [3.773 4.60 GeV], 7.4 pb⁻¹, Phys. Rev. D 99, 092002;
 - Tagged analysis: data at [3.773 4.60 GeV], 7.4 pb⁻¹, under review ;

Measurements of proton form factors at BESIII

BESIII results on the $p\bar{p}$ cross section and effective form factors

- BESIII results are consistent with the BaBar measurement.
- The precision of the BESIII results are significantly improved.

イロト イヨト イヨト イヨト

Measurements of proton form factors at BESIII

BESIII results for the electromagnetic form factors of proton

- Few results for the proton form factors exist but with big discrepancy (BaBar and PS170).
- BESIII results for the proton form factors have determined in a wide range of \sqrt{s} .
- BESIII results for the proton form factors ratio are consistent with BaBar results.
- The recent results (BESHI 2018) greatly improve the precision of the proton form factors.

Structure in the Effective Form Factor of Proton

Oscillation in the effective form factor is observed by BaBar and then confirmed by BESIII.

A physical explanation could be due to a possible interference effect involving rescattering processes at moderate kinetic energies of the outgoing hadrons (when the center-of-mass of the produced hadrons are separated by 1 fm

p is the three momentum of the proton in the frame of antiproton.

< □ > < 同 > < 回 > < 回 >

Measurements of Neutron Form Factors at BESIII

- Two measurements of neutron form factors:
- Feince experiment: Magnetic form factor of the neutron under the assumption G_E= 0. Nucl. Phys. B517, 3 (1998)
- DM2 experiment: Magnetic form factor of the neutron is determined from the magnetic form factor of ∧.

BESIII results for the electromagnetic form factors of neutron: ongoing analysis

- The neutron form factors (R_{em} , G_M) have been determined in a wide range of q^2 .
- The neutron form factors ratio has been determined for the first time.
- The precision of the neutron form factors are much better than those in previous results.
- The results need to be firstly approved by the BESIII community.

Status of the Hyperon Form Factors at BESIII

メロト メタト メヨト メヨト

Measurements of Hyperon Form Factors at BESIII

- Data sets at 4 energy points [2.232 3.08] GeV with a luminosity of 40.5 pb⁻¹ are used.
 - The lowest energy point is 1 MeV above the $\Lambda/\bar{\Lambda}$ mass threshold.
- Decay channels of $\Lambda\bar{\Lambda}$: $\Lambda \to p\pi^-$, $\bar{\Lambda} \to \bar{p}\pi^+$ and $\bar{\Lambda} \to \bar{n}\pi^0$ ($\Lambda \to$ inclusive decays).

BESIII results for the cross section of the $e^+e^- \rightarrow \Lambda\bar{\Lambda}$ channel

- The Born cross section is measured at 4 energy points, unexpected rise at threshold.
- The results are in good agreement with BaBar and DM2 results.
- The results may help to understand the mechanism of baryon production.

Measurements of Hyperon Form Factors at BESIII

- Data set at \sqrt{s} = 2.396 GeV with a luminosity of 66.9 pb⁻¹ is used.
- Multidimensional analysis is needed for a complete decomposition of G_E and G_M form factors.
- Form Factors has a complex form:
 - $G_E = |G_E|e^{i\phi_E}$ and $G_M = |G_M|e^{i\phi_M}$
 - Relative phase: $\Delta \phi = \phi_E \phi_M$
- A non-zero relative phase has a polarization effect on the final state even if the initial state is unpolarized

$$P_y = \frac{\sqrt{1 - \eta^2} \cos \theta \sin \theta}{1 + \eta \cos^2 \theta} \sin(\Delta \Phi)$$

• Determination of the polarization and the spin-correlation parameters allow to determine the relative phase

arXiv:1903.09421

$$|\frac{G_E}{G_M}| = 0.94 \pm 0.16 \pm 0.03_{\alpha_{\Lambda}}$$
$$\Delta \phi = 42^{\circ} \pm 16^{\circ} \pm 6^{\circ}_{\alpha_{\Lambda}}$$

Samer Ahmed (Helmholtz-Institut Mainz)

30.07.2019 19 / 25

Measurements of Charmed Hyperon Form Factors

BESIII results for the cross section of $e^+e^- \rightarrow \Lambda_c \bar{\Lambda}_{\bar{c}}$ channel

- The Born cross section is measured at 4 energy points with unprecedented precision.
- The best precision is achieved at \sqrt{s} = 4.6 GeV to be ~1.3%.

イロト イヨト イヨト イヨト

Measurements of Charmed Hyperon Form Factors

• The form factor ratio of Λ_c has been measured for the first time.

\sqrt{s} (MeV)	$lpha_{\Lambda_c}$	$ G_E/G_M $
4574.5	$-0.13 \pm 0.12 \pm 0.08$	$1.14 \pm 0.14 \pm 0.07$
4599.5	$-0.20 \pm 0.04 \pm 0.02$	$1.23 \pm 0.05 \pm 0.03$

Summary

- Two complimentary methods are used for the measurements of baryon form factors:
 - Energy scan method
 - Initial state radiation method
- The cross section of the $p\bar{p}$ channel has been measured in a wide range of q^2
- The form factors of proton (G_M and $|\frac{G_E}{G_M}|$) are measured with unprecedented precision
 - Indication that $|\frac{G_E}{G_M}| \neq 1$ at threshold
- An oscillation behaviour in the effective form factor of proton is obsessed.
- Results of neutron form factors (G_M and $|\frac{G_E}{G_M}|$) are coming soon.
- A non-vanishing cross section of $\Lambda\bar{\Lambda}$ and $\Lambda_c\bar{\Lambda}_{\bar{c}}$ at the threshold is observed.
- First measurements of the relative phase of the form factors G_E and G_M for Λ .
- First measurements of the form factors of Λ_c . More data will be collected in the next years.

Thank you

イロト イヨト イヨト イヨト 二日

Backup slides

イロト イヨト イヨト イヨト 二日

arXiv:1903.09421v1: A FF

Decay distribution of $e^+e^- \to \Lambda\bar{\Lambda} \ (\Lambda \to p\pi^-, \ \bar{\Lambda} \to \bar{p}\pi^+)$ derived in terms of the phase $\Delta\Phi$ and angular distribution parameter $\eta = \frac{\tau - R^2}{\tau - R^2}$, with $\tau = s/(4m_B^2)$

$$egin{aligned} \mathcal{W}(oldsymbol{\xi}) =& \mathcal{T}_0 + \eta \mathcal{T}_5 \ & -lpha_{\Lambda}^2 \left(\mathcal{T}_1 + \sqrt{1 - \eta^2} \cos(\Delta \Phi) \mathcal{T}_2 + \eta \mathcal{T}_6
ight) \ & + lpha_{\Lambda} \sqrt{1 - \eta^2} \sin(\Delta \Phi) \left(\mathcal{T}_3 - \mathcal{T}_4
ight), \end{aligned}$$

$$\begin{split} \mathcal{T}_{0}(\boldsymbol{\xi}) =& 1, \\ \mathcal{T}_{1}(\boldsymbol{\xi}) =& \sin^{2}\theta \sin\theta_{1} \sin\theta_{2} \cos\phi_{1} \cos\phi_{2} + \cos^{2}\theta \cos\theta_{1} \cos\theta_{2}, \\ \mathcal{T}_{2}(\boldsymbol{\xi}) =& \sin\theta \cos\theta \left(\sin\theta_{1} \cos\theta_{2} \cos\phi_{1} + \cos\theta_{1} \sin\theta_{2} \cos\phi_{2}\right), \\ \mathcal{T}_{3}(\boldsymbol{\xi}) =& \sin\theta \cos\theta \sin\theta_{1} \sin\phi_{1}, \\ \mathcal{T}_{4}(\boldsymbol{\xi}) =& \sin\theta \cos\theta \sin\theta_{2} \sin\phi_{2}, \\ \mathcal{T}_{5}(\boldsymbol{\xi}) =& \cos\theta_{1} \cos\theta_{2} - \sin^{2}\theta \sin\theta_{1} \sin\theta_{2} \sin\phi_{1} \sin\phi_{2}. \end{split}$$

イロト 不得 トイヨト イヨト

arXiv:1808.08917 (published on Nature)

Polarization and Entanglement in $\Lambda\bar{\Lambda}$ pair production in e^+e^- annihilation at BESIII ($e^+e^- \rightarrow J/\psi \rightarrow \Lambda\bar{\Lambda}$)

- Clear polarization, related to the moment μ(cos(θ_Λ))
- 5 σ deviation between α_{-} and α_{-}^{PDG}
- Most sensitive test of A_{CP} for the Λ baryon

Parameters	This work	Previous results
$lpha_\psi$	$0.461 \pm 0.006 \ \pm 0.007$	0.469 ± 0.027 25
$\Delta \Phi$	$(42.4 \pm 0.6 \pm 0.5)^\circ$	
α_{-}	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 [27]
α_+	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 27
$ar{lpha}_0$	$-0.692\pm 0.016\pm 0.006$	
A_{CP}	$-0.006\pm0.012\pm0.007$	0.006 ± 0.021 27
$\bar{lpha}_0/lpha_+$	$0.913 \pm 0.028 \pm 0.012$	

< □ > < □ > < □ > < □ > < □ >

Samer Ahmed (Helmholtz-Institut Mainz)