Status and Science from the SPT-3G Cosmic Microwave Background Receiver

Zhaodi Pan

for the SPT-3G collaboration
The University of Chicago, KICP

CMB and the cosmic history

Inflation leaves signature in CMB polarization (B-mode)

- Tensor-to-scalar ratio r
- Spectral index of fluctuations
- The energy scale of inflation
- Non-Gaussianity
- Can test inflation models

CMB is the image of the universe at recombination

- Encodes the thermal history
- Can probe the content of the universe, number of relativistic species, and other initial conditions.

Growth of structure affect the CMB at later times

- Gravitational lensing
- Imprint of galaxy clusters
- Can probe dark energy, sum of neutrino masses, and test general relativity

CMB – temperature and polazrizations

CMB – temperature and polazrizations

CMB power spectra and related science

South Pole Telescope

Ten meter sub-mm quality telescope
95, 150, 220 GHz and
1.6, 1.2, 1.0 arcmin resolution

Focal planes (3 generations)

2007: SPT-SZ960 Detectors95, 150, 220 GHz

2012: SPTpol 1,500 Detectors 95, 150 GHz +Polarization

2017: SPT-3G ~16,000 Detectors 95,150,220 GHz +Polarization

5

Detector structure

- Noise is dominated by photon fluctuations → need more detectors
- Total detector count is 16,000.
- Broadband sinuous antenna coupled to TES bolometers through in-line filters and superconducting Nb striplines
- 6 transition-edge sensors (TESs) per pixel, (95, 150, 220 GHz) x 2 polarizations

Detector properties

Z. Pan et, al arXiv:1805.03219
D. Dutcher et, al arXiv: 1809.00033
A. Anderson et, al. In preparation

- Frequency band edges agree with simulation within 3%.
- High uniformity: different wafers agree within 2%.
- Good optical efficiency: 0.81, 0.83, 0.73 for the 95, 150, and 220 GHz frequency bands (pixel+lenslet).
- Tightly-controlled thermal properties, including superconducting transition temperature, saturation power, etc.
- High linearity: 2.7%, 4.3%, and 1.2% responsivity variation for the three frequency bands over the observation field.

Readout

A. Bender, et al. Proc. of SPIE (2016) Vol. 9914, p. 99141D

J. Avva, et al. J Low Temp Phys (2018) 193: 547

A. Bender, et al. arXiv 1809.00033.

Readout performance

- The achieved readout noise is lower than the photon noise.
- 1/f noise knee frequency is at 33 mHz, which will not limit measurements on large scales.
- Crosstalk is shown to meet the design specification of ~< 0.5%.

Histogram of the achieved readout noise for all readout channels.

A. Bender, et al. arXiv 1809.00033.

Optics

Large field of view: $2.8 deg^2$ field-of-view.

Large lenses: 700mm-diameter alumina lenses with three-layer Teflon antireflection coating. The lenses are cooled to 4K to reduce loading.

Lyot stop and low-pass filter for cutting the stray reflections and out-of-band radiation.

Large focal plane: 450mm across.

South Pole integration

Integrated performance and status

	90 GHz	150 GHz	220 GHz
NET (array) $\mu K_{CMB} \sqrt{s}$	10	8	30
First year map depth (μK_{CMB}) arcmin, T)	19	14	40
Six-year map depth $(\mu K_{CMB}$ arcmin, T)	3.0	2.2	8.8

- First light on Jan 30, 2017
- 6-year 1500 deg² observation began in Feb, 2018.
- Improvements in 2019
 - two new detector wafers,
 - a more stable detector stage compared to 2018.

One week of SPT-3G data is deeper than Planck in a 1500 deg² patch.

SPT-3G survey

- Deep, high resolution (1 arcmin) measurement for 1500 deg² of sky.
- Overlaps with BICEP Array to separate the lensing-induced Bmode from B-mode signature of primordial gravitational waves.
- Overlaps with Dark Energy Survey (DES) for cross-correlation.
 - CMB lensing, cluster lensing, galaxy lensing, pairwise kSZ, and more.

Ongoing science analysis E-mode measurement (2018 data)

- The most sensitive measurement of the CMB E mode in the ell range of 1000 to 1700 from SPT.
- Daniel Dutcher's PhD thesis

The full survey— power spectra forecast

Ongoing science analysis

Lensing power spectrum measurement (2018 data)

- Per mode noise is slightly worse than SPTpol's $500 \ deg^2$ field (arXiv:1905.05777).
- Larger area (x3 area) --> reduced sample variance --> better cosmological parameter constraints compared to SPTpol.
- Now I am building the pipeline and testing things on the simulation.
- My thesis project.

Input kappa map for simulating the input CMB map.

Reconstructed kappa map from a lensed CMB map with SPT-3G noise level.

The full survey – lensing forecast

Lensing potential power spectrum forecast (Jason Henning)

- Measurement of lensing features at scale of ~14 arcmin for 1500 square degrees
- Overlaps with DES/LSST for cross-correlation
- Constrains growth of structure
- CMB lensing around known galaxy clusters \rightarrow cluster lensing

Delensing

- Both CMB lensing and primordial gravitational waves generates B-modes.
- SPT-3G overlaps with BICEP for lensing B-mode removal.
- Joint SPT-BICEP delensing can help improve $\sigma(r)$ to 0.003. Without delensing it's 0.006.

Science goals- clusters, astrophysics

Go to Lindsey Bleem's talk for more on galaxy clusters!

- Can find more clusters (~4000), especially at lower mass and higher redshift, can constrain the growth of structure (x10 deeper than SPT-SZ).
- Better catalogs of extragalactic mm-wave point sources (>15000 sources, including high-redshift star-forming galaxies, AGNs, and protoclusters, many of which are strongly lensed)
- Transient search (GRB, FRB ...)
- Planets (including planets from outer solar system), ...

Thank you!

Funded by

Berkeley McGill Fermilab ILLINOIS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

