BICEP/Keck:

Constraining primordial gravitational waves with CMB polarization observations from the South Pole

Marion Dierickx for the BICEP/Keck Collaboration APS DPF, July 31st 2019

Photo credit: R. Schwarz

CMB Polarization

CMB Polarization

Galactic Foregrounds

Mitigation strategy for additional "foreground" E- and B-mode signals:

- Observe at high galactic latitudes
- Expand frequency range in order to perform component separation

Why there?

- High altitude (9,300 ft = 2,800 m, most of it ice)
- Lack of day/night cycles makes for a very stable atmosphere
- Consistently dry
- Southern sky observable for 6 months of continuous darkness
- Minimal radio frequency interference

BICEP1 BICEP2 BICEP3

South Pole Telescope (SPT-3G)

DASI QUAD Keck Array BICEP Array

IceCube Lab

BICEP1 BICEP2 BICEP3

South Pole Telescope (SPT-3G)

Talks by Zhaodi Pan, Lindsey Bleem DASI QUAD Keck Array BICEP Array

IceCube Lab

BICEP/Keck Experimental Strategy:

- Target 2-degree peak of B-mode power spectrum
- Target the same 1% patch of sky since 2006
- Small-aperture refractive optics (cheap, low systematics)
- Initial effort at 150 GHz, now multi-frequency observations

DASI

QUAD

Keck Array

BICEP Array

IceCube Lab

South Pole Telescope (SPT-3G)

BICEP1

BICEP2

BICEP3

BICEP/Keck instrument overview

Telescope as compact as possible while allowing angular resolution to observe degree-scale features.

On-axis, refractive optics allow the entire telescope to rotate around boresight for polarization modulation.

A pulse tube cryogenic cooler cools the optical elements to 4.2K.

A 3-stage helium sorption refrigerator further cools the TES detectors to 0.27K.

x 4 =

Latest published analysis: BK15

x 4 =

x 5 =

x 4 =

Currently building

Keck 2015 season-only E-mode Maps

95 GHz E signal

Keck 2015 season-only E-mode Maps

95 GHz E signal

In one year of observations, the 220 GHz map is already 3x deeper than Planck's 217 GHz. BK15 Auto- and cross- spectra between BICEP/ Keck, WMAP, and Planck bands

For BK15 we included our new 220 GHz channel, yielding 78 spectra.

Multicomponent Likelihood Analysis

Take the joint likelihood of all the spectra simultaneously, compare to a model for BB:

- Expectation for ACDM and lensing
- 7-parameter foreground model
- *r*

Multicomponent Likelihood Analysis

Take the joint likelihood of all the spectra simultaneously, compare to a model for BB:

- Expectation for ACDM and lensing
- 7-parameter foreground model
- *r*

BK15 Results

BK15 Results

BICEP Array mount at U. Minnesota

BA1 (30, 40 GHz) integration

Conclusions

- BICEP/Keck lead the field in the quest to detect or set limits on inflationary gravitational waves:
 - Best published sensitivity to date
 - Best proven systematic control at degree angular scales
- BK15: Adding 2015 data including, for the first time, at 220 GHz:
 - Incremental improvement wrt BK14: from r_{0.05}<0.09 to r_{0.05}<0.07
 - Plank 15 + BK15 r_{0.05}<0.06 [r_{0.002}<0.055] (arXiv 1810.05216)
- Currently analyzing 3 years (2016-18) of 95 GHz from BICEP3 and 2 years of 270GHz from Keck: BK18 data analysis
 - Pushing multiband observations & component separation
- And we can go much further:
 - BICEP Array begins observing in 2020 expect $\sigma(r) \sim 0.003$
 - Delensing using SPT/SPT-3G data
 - Next Generation CMB Experiment: CMB Stage-4

Thank you!

Extra slides

BK15: Current Band Sensitivity (at l=80)

BK17: Expected Band Sensitivity (at l=80)

BK17 errors on r will be dominated by synchrotron sensitivity.

Redirecting the beam with a mirror

