Search for the Higgs boson decaying to a pair of muons in pp collisions at 13 TeV with the ATLAS detector

Jay Chan

University of Wisconsin-Madison

DPF2019, Northeastern, Boston

July 30, 2019

- Introduction
- Event selections and categorization
- Signal and background modeling
- Results
- Summary
- Backups

Introduction

- Event selections and categorization
- Signal and background modeling
- Results
- Summary
- Backups

Introduction – why $H \rightarrow \mu \mu$?

- Standard Model Higgs boson first discovered in 2012.
- Interactions between the Higgs boson and the third generation charged fermions (H $\rightarrow \tau \tau$ /bb, ttH) have been observed.
- Are there also interactions between the Higgs boson and the other generation fermions $(2^{nd}: \mu/c, 1^{st}: e)$?
 - Predicted by Standard Model
 - Not yet observed (only upper limits set)
- The search of $H \rightarrow \mu\mu$ decay is crucial for measuring the Higgs coupling to second generation fermions!

Introduction – our signals

- What do we search for?
 - Two isolated muons with opposite charges (decayed from Higgs)
 - Focus on the two major Higgs production modes: gluon-gluon fusion (ggF) and vector boson fusion (VBF)
 - Other production modes (ttH and VH) also considered

Introduction – our background

- What are the backgrounds?
 - The major background (> 90%) is the **Drell-Yan (DY) process** $(Z/\gamma^* \rightarrow \mu\mu)$
 - Also contributions from tops and diboson events.
- Major challenge: low branching ratio (~10⁻⁴) and large background
 signal/background ratio < 0.1%

- Hard to find the signal (requires good separation between signal and background)
- Result can be easily biased from the background mismodeling

Introduction – the progress

- Previous preliminary ATLAS limits with 80 fb⁻¹ of 13 TeV pp collisions: $\sigma^*BR < 2.2xSM$ (<u>ATLAS-CONF-2018-026</u>)
- New preliminary result with full Run2 data (139 fb⁻¹) released in EPS-HEP 2019. (EPS Talk, Public note: ATLAS-CONF-2019-028)
 - 75% more data, as well as refined analysis techniques:
 - Optimized BDT-based event categorization
 - Better background modeling
 - FSR recovery to improve the signal mass resolution
 - Sensitivity improved by ~50% (~half from higher statistics, half from optimization)

Introduction

- Event selections and categorization
- Signal and background modeling
- Results
- Summary
- Backups

Event selections

- Single-muon triggers
- Two opposite-sign muons
- Veto events with b-tagged jets
- 110 < $m_{\mu\mu}$ < 160 GeV

- ~2.5M events in data (mostly Drell-Yan)
- ~860 signal events expected (ϵ ~60%)

FSR recovery

- Muon may lose a significant amount of energy due to the QED final state radiation (FSR).
- Including photon in the m_{µµ} calculation can improve the signal reconstruction => achieve better sensitivity
- Signal $m_{\mu\mu}$ width reduced by ~3% (better resolution!)

Event categorization

- How do we distinguish signals from such a huge background?
- Exploit the kinematic differences using boosted decision trees (BDT) ∰
- BDT inputs:
 - kinematic variables of dimuon system and leading jets, and E_{T}^{miss}
- Categorize the events based on BDT scores
- Each category has different S/B ratio => enhance sensitivity!

Event categorization

- Training signal:
 - VBF+ggF (Higgs classifiers)
 - VBF (VBF classifier)
- Training background:
 - data sideband

In total 12 categories

Event categorization

- Very different S/B ratio between categories; VBF-High most sensitive
- Mainly VBF events in the VBF categories

DPF2019

ATLAS-CONF-2019-028

Introduction

- Event selections and categorization
- Signal and background modeling
- Results
- Summary
- Backups

Signal and background Modeling

- Strategy:
 - Analytical functions (describing the signals and background) fit to $m_{\mu\mu}$ distribution of data)
 - Signal and background yields to be determined through the fit

Signal modeling

- A double-sided Crystal Ball function (Gaussian + power-law tails) is used to describe the signal shape in each category
- Parameters determined from simulation data for each category
- Main systematics:
 - μ momentum scale and resolution
 - Missing higher order QCD correction
 - Underlying event and parton showering

Background modeling

- Major challenges:
 - Very low S/B ratio
 - DY process has very steep slope at low mass (near Z peak)
- Solution: use a core×empirical to model the background shape
 - Core function: fully rigid physics motivated line shape to cope with the non-trivial shape in the mass spectrum
 - LO DY line-shape convolved with muon resolution
 - Empirical function: fully flexible functions to absorb the mismodeling from the core function
 - Power-law or Epoly functions (different in each category)

Background modeling

- Selected functions have to pass the fit quality criteria:
 - Signal bias |S| < 20% of fit uncertainty on S in S+B fit to background-only template
- |S| in each category is then used as the background modeling systematic

- Introduction
- Event selections and categorization
- Signal and background modeling
- Results
- Summary
- Backups

Results

ATLAS-CONF-2019-028

 \bullet Perform a simultaneous maximum likelihood fit to the $m_{\mu\mu}$ distributions in 12 categories

Results

ATLAS-CONF-2019-028

• Signal and background yields determined by the fit

Results

	Observed	Expected
Significance	0.8σ	1.5 σ
Fitted signal strength μ	0.5±0.7	1.0±0.7
Upper limit @ 95% CL	1.7 x SM	1.3 x SM (assuming no H→μμ) 2.2 x SM (assuming H→μμ)

- No significant excess has been observed
- Results statistically limited

Summary

- $H \rightarrow \mu\mu$ decay channel provides the best opportunity for probing the interactions between Higgs boson and the second generation fermions.
- ATLAS measured $H \rightarrow \mu\mu$ decay with full Run2 data (139 fb⁻¹); sensitivity increased by ~50% (wrt previous iteration) due to the increased data and better analysis techniques
- Observed significance is 0.8σ , while 1.5σ is expected.
- The fitted signal strength $\mu = 0.5 \pm 0.7$ (currently compatible with both $\mu=1$ and $\mu=0$ assumptions)
- Looking forward the future results!

Backup slides

Mass distribution of the events with FSR

