#### Higgs-Precision Constraints on Colored Naturalness

Yi-Ming Zhong

**Boston University** 

In collaboration with R. Essig, P. Meade, H. Ramani JHEP 09 (2017) 085

APS DPF meeting, 08/01/2019

#### Outline

- Motivation
- A first look at signal strength
- Model survey
- Results

#### The naturalness problem

- $m_h^2$  are quadratically sensitive to UV
- New physics (NP) near the electroweak (EW) scale
- Adding new symmetries: Colored naturalness, Neutral naturalness

$$\begin{array}{c} \mathsf{top} \\ H \mathsf{-} \mathsf{-} \mathsf{-} \mathsf{-} \mathsf{f} \end{array} \\ \end{array}$$



+

#### **Direct searches**



#### ATL-PHYS-PUB-2019-022

#### Indirect effects





Change the Higgs production rate



Change the Higgs production rate

All captured by Higgs precision measurements

150+ channels have been measured

Yi-Ming Zhong

ymzhong@bu.edu

#### However, NP may also...





Change the tree-level couplings

Have extra new particles running in the loop



Have extra exotic/invisible decays

hide the light top partners...

## How robust is the Higgs precision?

## What is the best way to hide the light top partner?

#### Our strategy



# A first look at signal strength









 $r_{\rm inv} = \Gamma_{\rm inv} / \Gamma_{\rm tot}^{\rm SM}$   $r_{\rm exo} = \Gamma_{\rm exo} / \Gamma_{\rm tot}^{\rm SM}$ 

#### Constrain the light top partner



#### Add invisible decay



#### Change Higgs-top coupling



### Model survey

#### Spin-0



real eigenvalues

• 
$$\begin{pmatrix} m_{Q_3}^2 + m_t^2 + D_L^t & m_t X_t \\ m_t X_t^* & m_{U_3}^2 + m_t^2 + D_R^t \end{pmatrix} \Rightarrow \begin{pmatrix} m_{\tilde{t}_1}^2 & 0 \\ 0 & m_{\tilde{t}_2}^2 \end{pmatrix}$$

• *hgg* modification:

$$\mathcal{N}_{\tilde{t}} \approx \frac{1}{4} \left( \frac{m_t^2}{m_{\tilde{t}_1}^2} + \frac{m_t^2}{m_{\tilde{t}_2}^2} - \frac{m_t^2 X_t^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} \right)$$

Bounded by Higgs precision measurement

Dermisek & Low '08, Blum, D'Agnolo & Fan '13, Fan & Recce, '14, Fan, Recce & Wang '14 Carmi et al '15



Fan & Recce, '14, Fan, Recce & Wang '14



Fan & Recce, '14, Fan, Recce & Wang '14

#### Spin-0: MSSM

- Higgs sector of MSSM: two-Higgs-doublet-model (2HDM), lighter Higgs = 125 GeV Higgs
- Coupling modifier

type-II 2HDM

 $r_c = r_t = \frac{\cos \alpha}{\sin \beta}, \quad r_b = r_\tau = -\frac{\sin \alpha}{\cos \beta}, \quad r_V = \sin(\beta - \alpha)$ 

 $\alpha$  : rotation angle in Higgs matrix

 $\tan\beta = v_u/v_d$ 

#### Spin-0: MSSM

- Higgs sector of MSSM: two-Higgs-doublet-model (2HDM), lighter Higgs = 125 GeV Higgs
- Coupling modifier
  - $\tan \beta \ll 1: r_b, r_V \rightarrow 1, r_t$  is free

type-II 2HDM

•  $\tan\beta \gg 1: r_t, r_V \rightarrow 1, r_b$  is free

 $\tan\beta = v_u/v_d$ 

#### Running of the top Yukawa imposes perturbativity bounds on tan β



 Higgs is a PNGB of a larger symmetry that is collectively broken (from a EFT with expansion scale *f* )

SU(3) Simplest Little Higgs SU(5) Littlest Little Higgs

 $-1 < \mathcal{N}_T < 0$ 

• hgg modification:

$$\mathcal{N}_T = -\frac{m_t^2}{m_T^2} + \mathcal{O}\left(\frac{v^2}{f^2}\right)$$

#### Spin-1/2 extensions

• Extend the Higgs sector to be 2HDM

SU(4) Simplest Little Higgs

- Allow changes on  $r_t, r_b, r_V \dots$
- Best: type-II 2HDM

#### Spin-1

- Complicated Cai, Cheng & Terning, '08 (need SUSY + an enlarged symmetry, right-handed top ~ Higgsino, top Yukawa ~ gauge coupling...)
- hgg modification

$$\mathcal{N}_{\vec{Q}} \sim -\frac{21}{4} \frac{m_t^2}{m_{\vec{Q}}^2}$$

Yi-Ming Zhong

ymzhong@bu.edu

#### Results

#### Data sets

|         |              | Energy                        | Int. Luminosity                | Measurements           |
|---------|--------------|-------------------------------|--------------------------------|------------------------|
| imit    | Tevatron     | 1.96 TeV                      | 6-10/fb                        | 15 channels            |
| Current | ATLAS<br>CMS | 7+8 TeV<br>13 TeV             | 25/fb<br>2.3-36/fb             | 150+ channels          |
|         | LHC Run 3    | 14 TeV                        | 300/fb                         | Projected              |
|         | LHC Run 4    | 14 TeV                        | 3,000/fb                       | searches               |
|         | ILC          | 250 GeV<br>350 GeV<br>500 GeV | 2,000/fb<br>200/fb<br>4,000/fb |                        |
|         | CEPC         | 240 GeV                       | 10,000/fb                      | Combined coupling fits |
|         | FCC-ee       | 240 GeV<br>350 GeV            | 10,000/fb<br>2,600/fb          |                        |
| •       | FCC-hh       | 100 TeV                       | 30,000/fb                      |                        |

**Current expected limit** 

Yi-Ming Zhong

#### Models w/ top partner only



degenerate direction 
$$m_{\tilde{t}_1} = m_{\tilde{t}_2} \equiv m_{\tilde{t}}$$

w/ 2o CL

#### Minimal ext. of spin-0



Yi-Ming Zhong

#### Minimal ext. of spin-1/2









ymzhong@bu.edu

#### Spin-1/2 w/ 2HDM



#### Spin-0



Yi-Ming Zhong

ymzhong@bu.edu

#### Spin-0



Yi-Ming Zhong

ymzhong@bu.edu

w/ 2σ CL

#### **Complementary probes**

Measure  $\sigma(e^+e^- \to Zh)$ 



Yi-Ming Zhong

ymzhong@bu.edu





follow Craig, Farina, McCullough & Perelstein '14

Yi-Ming Zhong

ymzhong@bu.edu

w/ 2σ CL

include D-terms

#### Summary

- Higgs precision measurements, on their own, are quite robust.
- Change r<sub>t</sub> can also hide light colored top partners effectively.
- "Blind spots" exist when there are *multiple top partners.*

#### Backup

#### After Moriond 2019



based on ATLAS-CONF-2019-005, ATLAS-CONF-2018-054, CMS-HIG-17-031, CMS-HIG-17-023

ymzhong@bu.edu