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Understanding the SM with Di-Higgs i

The SM Higgs potential is:
V(¢) = —p*¢” + Ag"

Expand around the minimum, get:

= v = 246 GeV
A

V = Vi + M?h? + \vh® + ...

Xe1q1119q , H
K, K /7
AD e
This term allows di-Higgs production] ~ © 79900000 H
. A : my
The SM predicts di-Higgs production! k) = 902

This higher-order term tells us more
about the shape of the potential!
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Why Study the Shape!?

Many models alter the Higgs potential!

Inflation— one of the best models for

early universe evolution— requires a scalar

... just like the Higgs!
U

Need couplings to gravity:

which modify the shape of the potential!

Bezrukov and Shaposhnikov | I
C L V) |
Other models have the Higgs potential J
undergo a phase transition, which I "
could explain matter-antimatter asymmetry C
This phase transition requires
modifications to the SM potential! - : R

C.Wagner
These are just some examples:

If we can measure the shape of the potential,
we can find hints of new physics!
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https://indico.cern.ch/event/731450/contributions/3111430/attachments/1712416/2761193/Fermilab.WC.09.18.pdf
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Existing searches can probe Kjx, and set
constraints on the shape of the Higgs potential!
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-58/

S
o (VL VL — hh) ~ ?(czv —c%)

e Deviations in the shape aren’t the only thing we can measure with di-Higgs

e We can also access some fundamental interactions in the Standard Model, which are
currently unmeasured!

e cyv is one first example: the coupling between two vector bosons and two Higgs
bosons has no current constraints!

e This is just the start of a program where we can explore many other couplings which
can be measured with di-Higgs final states: will be part of a global EFT program
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§
A (Vi Vi, — hh) >~ F(Cw — C%/)

500 fb \

¢ What does this amplitude
actually say?

¢ Two important things: 301 -~

| (SM)  Cav

e The cross-section will s C2V = |
gsrow when cav != ¢y e COV =3

e But the cross-section is
also dependent on s”!

200 800

mHH [GeV]
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What Else?

e Can also search for
resonances decaying to di-
Higgs final states

events

® These are predicted by
many models: e.g. 2HDM
models, where “heavy Higgs”
decays to pairs of our Higgs

muH [GeV
[GeV] ¢ |n some parameter

corners,VBF is the
highest cross-section
process for these signals!
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¢ ook for two Higgs bosons

e We like to do this with the
4 b-jet final state: the
largest branching ratio, but
a challenging background

» Select two forward jets to tag

the VBF process
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e Several sets of cuts used

> [
. £ | ATLAS Simulation
to enhance selection to  § [ reimnay :_
. L F = : —e— 4b (p. > 40 GeV, n| < 2.0)
s =13 TeV ; :
X i [
the Slgnal and reduce g " Spin-0 narrow-resonance [ Spin-0 broad-resonance "n@m= ARy,
i ' @ X< 1.6
backgrounds g ol
3 - @ = 2 VBF jets
<<t) (pT > 30 GeV, | > 2.0)
|mj‘J/BF| >5.0

o Triggers require 2 b-tags: 1l oom > 1000 GV
use fast tracking in the ;
. . [ —e I ET'i|<60 GeV
HLT to significantly 10} | o cenee
reducethe rate,keep :III||||||||II||||I||:IIIII|III|III|IIIIII Trigger
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most of the signal my [GeV] my [GeV]

P, of H candidates

-e= |An <15
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® For the first time in ATLAS (!) use
a b-jet energy regression with a

BDT: use several track-based ) LR
variables to correct b-jet energies < 0_05:— ATLAS Simulation Vs= 13 TeV m, =600 GeV .
to closer to true value - g mode o .
0.04— — before regression 107.93 GeV 117.36 GeV 18.69 GeV _
L d 257 [ — after regression 113.15 GeV 118.98 GeV 14.57 GeV i
® | eads to a 257% improvement in - ]
the sharpness of Higgs peaks! 0'03:_ B
. 0.02 —
® Tested in data and MC: no - .
mismodelings observed, no new 0 012 -
systematic assigned T .
. . __,.-;‘,‘A i | T T T T TR T T BRI = — - PSR eamennen

e (nb: most bkgd is data-driven, 60 8 100 120 140 160 180
so impact of any uncertainties m,, [GeV]

would be small)
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e Signal is concentrated at
the center of the my my
plane: use the surrounding
regions to model the bkgd

m3 [GeV]

N
o
o

150

100

- ATLAS Preliminary I
ls=13TeV, 126 b’ —6

- Multijet background in SR+VR+SB

| | | | | | |
150 200
mg2 [GeV]

“Sideband” region at the far
side is used to generate bkgd
model, and “validation” region’
in orange used to assign
uncertainties and check
quality
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Background Model Details 8

Generically:

g ' : |. Measure a transfer factor
(signal 2.Apply the transfer factor
region) to another region

B
D =C—
A

var |
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In our case:

|. Measure a transfer factor

) This time the transfer factor
" is more complicated:
iteratively reweight kinematic
distributions to get agreement

S pTTTTTTTTT T 5 S B o e o 50 e e
Da = @ Dal
Gao  ATLAS o = G40 ATLAS o =
= Vs=13T [ Ha it 3 2 ss00F- Vs=13T 1 Ha I E
@ 3500— solved [ Se tonic tt - 5 ) solved [ Se tonic tt
- - - Sc; (280 GeV) %30 F - - - Sc; (280 GeV) _
----- 100 > 100 E
w S0 St ertai w 25 A St ertainty

Control Region Signal Region

2-tag 4-tag

Data / Bkgd

- N
Data /Bkgd 4
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2.Apply the transfer factor
to another region
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Control Region
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e Data on the right plot is 4-btag data
e Multijet bkgd is 2-btag, reweighted iteratively to match 4-btag data

o After reweighting, see good agreement in the control region!
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Validation
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e Same story here: data is 4-btag, and multijet bkgd is 2-btag,
reweighted using functions derived in control region

e See good agreement in validation region!
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Signal Region
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e Signal region shows no
significant excess

e [argest deviation is
.50 at 550 GeV, and
< |0 at 750 GeV

e So we set limits
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Limits on cyv

o) g Lttt r ettt 'E
; - ATLAS Preliminary = Non-resonant signal -
. T 10° ls=13 TeV. 126 fb —e— Observed limit (95% CL) =
o - - L = - ’ 3
Non. resonant SIgnaI Cross T - HH—bbbb e Expected limit (95% CL)  _
section has a strong g10'e Bl Eroocted 1o E
dependence on cyv, as 6 107k Expected + 20 ]
expected
10° g E
e But also notice that moving 10 -
away from the SM value, the L -
limit becomes much lower: this I T e R
means the shape is easier to e Cav
observe (higher mun) values : | ' | e
é 1:___:::::-‘ : ____ O / — _; — bbbb
e This is opposite of the case of o |
Kx like for the ggF analysis! O e £l .
:-5.0-12.0 | _5.89-_12.-0 ?TLAS ] Comb. +20 (exp.)
I (63-11.9) : 2?;1?3;—?\%1 | T Theory prediction
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Resonant Limits

¢ Also set limits on new
resonances decaying to
pairs of Higgs bosons,
produced via VBF

e First limits on this type
of new physics model!
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Conclusions

e di-Higgs analyses are a critical part of the physics programs of the LHC for
run 2 and beyond

® Traditionally these are used to measure properties of the Higgs potential,
but modifications can tell us even more about the SM

® These can be rare signatures, but BSM deviations give huge cross-sections

® Here, we present the first measurement of the cv parameter by studying di-
Higgs produced by VBF

e No excess is observed, and we set limits on resonances and the first limits
on the cav parameter

® More in ATLAS-CONF-2019-030
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-030/

Thank you!
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