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Understanding the SM with Di-Higgs
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This term allows di-Higgs production! 
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The SM Higgs potential is:

Expand around the minimum, get: 
µp
�
= v = 246 GeV

The SM predicts di-Higgs production!
This higher-order term tells us more 

about the shape of the potential!
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Why Study the Shape?
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Many models alter the Higgs potential!

Inflation— one of the best models for
early universe evolution— requires a scalar

… just like the Higgs!

These are just some examples:
If we can measure the shape of the potential,

we can find hints of new physics!

⇠h2

2
RNeed couplings to gravity: 

which modify the shape of the potential!
Bezrukov and Shaposhnikov 

Electroweak Phase Transition

Higgs Potential Evolution in the case of a first order  

Phase Transition

Gravitational Waves may be produced at the Phase Transition
Ghosh, this workshop

Other models have the Higgs potential
undergo a phase transition, which

could explain matter-antimatter asymmetry

C. Wagner 

This phase transition requires 
modifications to the SM potential!

https://indico.cern.ch/event/731450/contributions/3111430/attachments/1712416/2761193/Fermilab.WC.09.18.pdf
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Results on DiHiggs
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Theory prediction

Existing searches can probe κƛ, and set 
constraints on the shape of the Higgs potential! 

ATLAS-HDBS-2018-58 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-58/
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• Deviations in the shape aren’t the only thing we can measure with di-Higgs

• We can also access some fundamental interactions in the Standard Model, which are 
currently unmeasured!

• c2V is one first example: the coupling between two vector bosons and two Higgs 
bosons has no current constraints!

• This is just the start of a program where we can explore many other couplings which 
can be measured with di-Higgs final states: will be part of a global EFT program

But This Isn’t the Only Thing
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Non-resonant VBF production

• Leading LO diagrams scaled by 
c2V, cV2, cVκλ respectively 

• Leading contribution is scaled by 

• c2v varies by 1 => xs varies > 50x 

• Scan points (table on the right)
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• What does this amplitude 
actually say?

• Two important things:

• The cross-section will 
grow when c2V != cV

• But the cross-section is 
also dependent on s^!

What Can We Measure?
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Non-resonant VBF production

• Leading LO diagrams scaled by 
c2V, cV2, cVκλ respectively 

• Leading contribution is scaled by 

• c2v varies by 1 => xs varies > 50x 

• Scan points (table on the right)
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• Can also search for 
resonances decaying to di-
Higgs final states

• These are predicted by 
many models: e.g. 2HDM 
models, where “heavy Higgs” 
decays to pairs of our Higgs

• In some parameter 
corners, VBF is the 
highest cross-section 
process for these signals!

What Else?
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• Look for two Higgs bosons

• We like to do this with the 
4 b-jet final state: the 
largest branching ratio, but 
a challenging background

• Select two forward jets to tag 
the VBF process

How Do You Measure This?
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Event selection

• To suppress QCD (major) 
– Cut on Pt of higgs candidates 
Leading:  pT, lead > 0.5m4b - 90 [GeV] 
Sub leading:  pT, subl > 0.33m4b - 70 [GeV] 

– |Δη(hh)| < 1.5 
– Cut on the observables of VBF jets (new) 

• Δη > 5 
• mjj > 1200 GeV 

– pT of vector sum of 6 jets < 60 GeV (new) 
• To suppress ttbar (minor) 

– Calculate Xwt for all combination of 2 b-jets 
and 1 non-tagged jet.

② Suppressing the backgrounds

b jet

h

H  
(mass: m4b)

ΔRjj, leading

ΔRjj, sub-leading

h
VBF jet

pT > 40 GeV

pT > 30 GeV

|η|=2.0

topology and preselection

Requirement on the the angular distance 
between jets in the higgs candidates.

① Obtaining higgs candidates

m4b m4b
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• Several sets of cuts used 
to enhance selection to 
the signal and reduce 
backgrounds

• Triggers require 2 b-tags: 
use fast tracking in the 
HLT to significantly 
reduce the rate, keep 
most of the signal

Analysis Selections
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• For the first time in ATLAS (!) use 
a b-jet energy regression with a 
BDT: use several track-based 
variables to correct b-jet energies 
to closer to true value

• Leads to a 25% improvement in 
the sharpness of Higgs peaks!

• Tested in data and MC: no 
mismodelings observed, no new 
systematic assigned

• (nb: most bkgd is data-driven, 
so impact of any uncertainties 
would be small)

B-Jet Regression
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• Signal is concentrated at 
the center of the mH mH 
plane: use the surrounding 
regions to model the bkgd

Background Model
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 PreliminaryATLAS

 -1 = 13 TeV, 126 fbs

Multijet background in SR+VR+SB
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• “Sideband” region at the far 
side is used to generate bkgd 
model, and “validation” region 
in orange used to assign 
uncertainties and check 
quality
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Background Model Details
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Generically:

1. Measure a transfer factor

2. Apply the transfer factor
to another region
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Background Model Details
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In our case:
1. Measure a transfer factor

2. Apply the transfer factor
to another region

This time the transfer factor
is more complicated: 

iteratively reweight kinematic
distributions to get agreement

HC Jet 4 Pt [GeV]
0 20 40 60 80 100 120 140 160 180D

at
a 

/ B
kg

d

0.5

1

1.5

Ev
en

ts
 / 

5 
G

eV

0

500

1000

1500

2000

2500

3000

3500

4000
Data
Multijet

tHadronic t
tSemi-leptonic t

Scalar (280 GeV)
100×SM HH 

Stat. Uncertainty

ATLAS

Resolved Control Region, 2016

-1 = 13 TeV, 24.3 fbs

HC Jet 4 Pt [GeV]
0 20 40 60 80 100 120 140 160 180D

at
a 

/ B
kg

d

0.5

1

1.5

Ev
en

ts
 / 

5 
G

eV

0

500

1000

1500

2000

2500

3000

3500

4000 Data
Multijet

tHadronic t
tSemi-leptonic t

Scalar (280 GeV)
100×SM HH 

Stat. Uncertainty

ATLAS

Resolved Control Region, 2016

-1 = 13 TeV, 24.3 fbs



M. Swiatlowski (UC) July 31, 2019

E
ve

n
ts

 /
 4

0
 G

e
V

2−10

1−10

1

10

210

310

410

510
Data 2016-2018

Multijet

tAll-had t

tNon all-had t

ggF non-resonant HH

Post-fit uncertainty

 PreliminaryATLAS

 -1 = 13 TeV, 126 fbs

Sideband region
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• Data on the right plot is 4-btag data

• Multijet bkgd is 2-btag, reweighted iteratively to match 4-btag data

• After reweighting, see good agreement in the control region!

Control Region
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• Same story here: data is 4-btag, and multijet bkgd is 2-btag, 
reweighted using functions derived in control region

• See good agreement in validation region!

Validation Region
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• Signal region shows no 
significant excess

• Largest deviation is 
1.5σ at 550 GeV, and 
< 1σ at 750 GeV

• So we set limits

Signal Region
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• Non-resonant signal cross-
section has a strong 
dependence on c2V, as 
expected

• But also notice that moving 
away from the SM value, the 
limit becomes much lower: this 
means the shape is easier to 
observe (higher mHH) values

• This is opposite of the case of 
κƛ like for the ggF analysis!

Limits on c2V
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• Also set limits on new 
resonances decaying to 
pairs of Higgs bosons, 
produced via VBF

• First limits on this type 
of new physics model!

Resonant Limits
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• di-Higgs analyses are a critical part of the physics programs of the LHC for 
run 2 and beyond

• Traditionally these are used to measure properties of the Higgs potential, 
but modifications can tell us even more about the SM

• These can be rare signatures, but BSM deviations give huge cross-sections

• Here, we present the first measurement of the c2V parameter by studying di-
Higgs produced by VBF

• No excess is observed, and we set limits on resonances and the first limits 
on the c2V parameter

• More in ATLAS-CONF-2019-030 

Conclusions
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-030/
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Thank you!
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