Probing Non-Universal Theories Through Higgs Processes at Hadron Colliders

Wen Han Chiu, Zhen Liu, Liantao Wang

APS DPF Meeting 2019
Aug 1, 2019
Where are we now?

• Standard Model = Success*
Where are we now?

- Standard Model = Success*
- Still need description of NP
Where are we now?

- Standard Model = Success
- Still need description of NP
- Assume:

\[SU(3) \times SU(2)_L \times U(1)_Y \subset G \]
Where are we now?

• Standard Model = Success*
• Still need description of NP
• Assume:
 \[SU(3) \times SU(2)_L \times U(1)_Y \subseteq G \]
• IR limit of NP obeys SM gauge symmetries
SM-EFT

• Extend SM with all operators obeying SM-gauge symmetry

\[\mathcal{L} = \mathcal{L}_\text{SM} + \sum_{d=5}^{\infty} \sum_i \frac{c_{d,i}}{\Lambda^{d-4}} \mathcal{O}_{d,i} \]
SM-EFT

• Extend SM with all operators obeying SM-gauge symmetry

\[\mathcal{L} = \mathcal{L}_{\text{SM}} + \sum_{d=5}^{\infty} \sum_{i} \frac{c_{d,i}}{\Lambda^{d-4}} \mathcal{O}_{d,i} \]

• In the Warsaw basis
 • \(d = 5 \) has 2 operators
 • \(d = 6 \) has 59 CP-even operators ← LO correction to SM
Probing EFT parameter space

• High Λ suppression \Rightarrow Needs precision measurements
Probing EFT parameter space

• High Λ suppression \Rightarrow Needs precision measurements
• Typically associated with EWPO

$\delta \lesssim \mathcal{O}(1\%)$
Probing EFT parameter space

• High Λ suppression \Rightarrow Needs precision measurements
• Typically associated with EWPO
 \[\delta \lesssim O(1\%) \]
• But is this the only way?
Probing EFTs with hadron colliders

• Doable if

\[\frac{S}{B} \propto E^n, \quad n \geq 1 \]
Probing EFTs with hadron colliders

• Doable if

\[\frac{S}{B} \propto E^n, \quad n \geq 1 \]

• Example: Diboson processes

\footnote{Figure from LT Wang}
Diboson at LHC

<table>
<thead>
<tr>
<th>Operators</th>
<th>Process</th>
<th>High – energy primaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{Hu}</td>
<td>$\bar{u}_L d_L \rightarrow W_L Z_L, W_L h$</td>
<td>$\sqrt{2}c_L^{(3)}/\Lambda^2$</td>
</tr>
<tr>
<td>O_{Hd}</td>
<td>$\bar{u}_L u_L \rightarrow W_L W_L$</td>
<td>$(c_L + c_L^{(3)})/\Lambda^2$</td>
</tr>
<tr>
<td>O_L</td>
<td>$\bar{d}_L d_L \rightarrow Z_L h$</td>
<td></td>
</tr>
<tr>
<td>$O_L^{(3)}$</td>
<td>$\bar{d}_L d_L \rightarrow W_L W_L$</td>
<td>$(c_L - c_L^{(3)})/\Lambda^2$</td>
</tr>
<tr>
<td></td>
<td>$\bar{u}_L u_L \rightarrow Z_L h$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\bar{f}_R f_R \rightarrow W_L W_L, Z_L h$</td>
<td>c_{Hf}/Λ^2</td>
</tr>
</tbody>
</table>
Diboson at LHC

First generation only

<table>
<thead>
<tr>
<th>Operators</th>
<th>Process</th>
<th>High – energy primaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{Hu}</td>
<td>$\bar{u}_L d_L \rightarrow W_L Z_L, W_L h$</td>
<td>$\sqrt{2}c_L^{(3)}/\Lambda^2$</td>
</tr>
<tr>
<td>O_{Hd}</td>
<td>$\bar{u}_L u_L \rightarrow W_L W_L$</td>
<td>$(c_L + c_L^{(3)})/\Lambda^2$</td>
</tr>
<tr>
<td>O_L</td>
<td>$\bar{d}_L d_L \rightarrow Z_L h$</td>
<td>$(c_L - c_L^{(3)})/\Lambda^2$</td>
</tr>
<tr>
<td>$O_L^{(3)}$</td>
<td>$\bar{d}_L d_L \rightarrow W_L W_L$</td>
<td>c_{Hf}/Λ^2</td>
</tr>
</tbody>
</table>

$\bar{d}_L d_L \rightarrow W_L W_L$ | $(c_L - c_L^{(3)})/\Lambda^2$ |

$\bar{f}_R f_R \rightarrow W_L W_L, Z_L h$ | c_{Hf}/Λ^2 |
Diboson at LHC

First generation only

<table>
<thead>
<tr>
<th>Operators</th>
<th>Process</th>
<th>High – energy primaries</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_{Hu}</td>
<td>$\bar{u}_L d_L \rightarrow W_L Z_L, W_L h$</td>
<td>$\sqrt{2}c_L^{(3)}/\Lambda^2$</td>
</tr>
<tr>
<td>O_{Hd}</td>
<td>$\bar{u}_L u_L \rightarrow W_L W_L$</td>
<td>$(c_L + c_L^{(3)})/\Lambda^2$</td>
</tr>
<tr>
<td>O_L</td>
<td>$\bar{d}_L d_L \rightarrow Z_L h$</td>
<td>$(c_L - c_L^{(3)})/\Lambda^2$</td>
</tr>
<tr>
<td>$O_L^{(3)}$</td>
<td>$\bar{f}_R f_R \rightarrow W_L W_L, Z_L h$</td>
<td>c_{Hf}/Λ^2</td>
</tr>
</tbody>
</table>

1 R. Franceschini et al, [1712.01310](https://arxiv.org/abs/1712.01310)
Constraints from flavor

• This type of model contributes to FCNCs
Constraints from flavor

- This type of model contributes to FCNCs
- For $\Delta C = 2$, 2 classes of processes:
Constraints from flavor (cont.)

• Contributes to 2 different $\Delta C = 2$, $d = 6$ operators:
 \[\bar{c}_L u_R \bar{c}_R u_L \text{ and } \bar{c}_R \gamma_\mu u_R \bar{c}_R \gamma^\mu u_R \]
Constraints from flavor (cont.)

• Contributes to 2 different $\Delta C = 2, d = 6$ operators:
 \[\bar{c}_L u_R \bar{c}_R u_L \text{ and } \bar{c}_R \gamma_\mu u_R \bar{c}_R \gamma^\mu u_R \]

• Parametrically, the corresponding Wilson coefficients are given by
 \[
 \frac{1}{16\pi^2} \frac{v^2}{M_Z^2} \frac{M_b^2}{M_W^2} \frac{c_{Hu}}{\Lambda^2} |V_{ub}||V_{cb}| \left(U_{R,uu}^\dagger U_{R,uc} \right) \lesssim 1.6 \times 10^{-7} \left(\frac{1}{1 \text{ TeV}} \right)^2
 \]
 \[
 3 \left| \frac{c_{Hu}}{\Lambda^2} v \left(U_{R,uu}^\dagger U_{R,uc} \right) \right|^2 \lesssim 5.7 \times 10^{-7} \left(\frac{1}{1 \text{ TeV}} \right)^2
 \]

1. O. Gedalia et al, 0906.1879
Constraints from flavor (cont.)

• Model dependent: Assume $|U_{R,uu}^\dagger U_{R,uc}| \sim |V_{ud}||V_{us}|$

 \[\text{SM} - \text{EFT: } \frac{c_{Hu}}{\Lambda_{\text{TeV}}^2} \lesssim 48.0 \]

 \[\text{EFT} - \text{EFT: } \frac{c_{Hu}}{\Lambda_{\text{TeV}}^2} \lesssim 8.86 \times 10^{-3} \]
Constraints from flavor (cont.)

• Consider 2 generation universal theories

\[U_{R,uu}^\dagger U_{R,uc} \rightarrow U_{R,uu}^\dagger U_{R,uc} + U_{R,uc}^\dagger U_{R,cc} = -U_{R,ut}^\dagger U_{R,tc} \]
Constraints from flavor (cont.)

• Consider 2 generation universal theories

\[U_{R,uu}^+ U_{R,uc} \rightarrow U_{R,uu}^+ U_{R,uc} + U_{R,uc}^+ U_{R,cc} = -U_{R,ut}^+ U_{R,tc} \]

• Dominated by

\[\frac{\Delta \Gamma(Z \rightarrow c\bar{c})}{\Gamma(Z \rightarrow c\bar{c})} \approx 1.6\% \]

\[\rightarrow \frac{c_{Hu}}{\Lambda_{\text{TeV}}^2} \lesssim 0.163 \]

\(^1\) PDG, Phys.Rev.D\textit{98}, 030001
Analysis

• Implemented operator in MG5_aMC using a UFO file from FeynRules
Analysis

• Implemented operator in MG5_aMC using a UFO file from FeynRules
• Generated Zh events while scanning values of c_{Hu}/Λ^2
Analysis

• Implemented operator in MG5_aMC using a UFO file from FeynRules
• Generated $Z\ell$ events while scanning values of c_{Hu}/Λ^2
• Background estimated from 2017 ATLAS heavy resonance search\(^1\)
 • Extended range by fitting tail to exponential

\(^1\) The ATLAS Collaboration, [1712.06518](https://arxiv.org/abs/1712.06518)
Analysis

• Implemented operator in MG5_aMC using a UFO file from FeynRules
• Generated Zh events while scanning values of c_{Hu}/Λ^2
• Background estimated from 2017 ATLAS heavy resonance search1
 • Extended range by fitting tail to exponential
• Cuts imposed to mimic the ATLAS study and scaled to match SM Zh

1 The ATLAS Collaboration, 1712.06518
Analysis

• Data binned by M_{Zh} with bin sizes of 150 GeV
• Exclude regions with total significance of bins with $M_{Zh} < \Lambda$ greater than 2
Uncertainty estimates

- Assume a universal 5% systematic uncertainty
- Theoretical uncertainty from scale uncertainty → Assumed to be gaussian and folded in
Results

Projected Existing Collider Reach

Results (cont.)

Flavor Model Comparison

$\Lambda_{95\%}$ (TeV) vs C_{H_u}

- HL-LHC $pp \rightarrow Zh$
- HL-LHC $\gamma p \rightarrow AV$
- Benchmark theory 1
- Benchmark theory 2
Analysis (cont.)

• Repeated analysis for several potential future colliders:

<table>
<thead>
<tr>
<th>Collider</th>
<th>\sqrt{s}</th>
<th>$\int L dt$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE-LHC</td>
<td>27 TeV</td>
<td>15 ab$^{-1}$</td>
</tr>
<tr>
<td>FCC-hh</td>
<td>37.5 TeV</td>
<td>30 ab$^{-1}$</td>
</tr>
<tr>
<td>FCC-hh</td>
<td>100 TeV</td>
<td>30 ab$^{-1}$</td>
</tr>
</tbody>
</table>

• Estimated background via differential rescaling from parton luminosity ratios
Results

1 Numbers from C Grojean et al
Results (cont.)
Complementarity with Higgs exotic decays
Complementarity with Higgs exotic decays
Summary

• Explored existing constraints on flavor models
Summary

• Explored existing constraints on flavor models
• Projected reach for many hadron colliders
Summary

• Explored existing constraints on flavor models
• Projected reach for many hadron colliders
• Higgs exotic decay searches at lepton colliders provide complementary information