Search for heavy ZZ resonances in the 4ℓ and $\ell\ell\nu\nu$ final states with the ATLAS detector

Jing Li University of Michigan Shanghai Jiao Tong University Aug. 1st, 2019

Introduction

- Benchmark models:
 - Scalars and bulk Randall-Sundrum Gravitons
- Search for heavy resonance with $X \rightarrow ZZ \rightarrow 4\ell / \ell \ell \nu \nu$
 - 4*ℓ*: good mass resolution, high signal to background ratio
 - $\ell\ell\nu\nu$: larger branch ratio, dominates at high mass
 - Both ggF and VBF production
- 36.1 fb⁻¹ data published: <u>Eur. Phys. J. C 78 (2018) 293</u>
- Full Run2 analysis:
 - Search for mass range from 200 2000 GeV

Analysis Overview

- The analysis is performed independently in $H \rightarrow ZZ \rightarrow 4\ell$ and $H \rightarrow ZZ \rightarrow \ell\ell\nu\nu$ final states, then combine together.
- Working on full Run2 data (139 fb⁻¹): analysis is still blinded with major updates of:
 - For 4ℓ channel:
 - Optimization of VBF categorization
 - For $\ell\ell\nu\nu$ channel:
 - Bring in E_T^{miss} -significance
 - One-sideband method for Z + jets estimation

$H \rightarrow ZZ \rightarrow 4\ell$: Signal modeling

- Narrow Width Approximation
 - $\Gamma_H = 4.07 \text{ MeV}$
 - Shape: sum of a Crystal Ball function and a Gaussian function
 - Fitting parameters and acceptance are interpolated between available mass points by polynomial functions
- Large Width Approximation
 - $\Gamma_H = 1, 5, 10\% \text{ of mS}$

$H \rightarrow ZZ \rightarrow 4\ell$: Background

- ZZ continuum (~98%), $qq \rightarrow ZZ$ and $gg \rightarrow ZZ$
 - Shape is modeled with empirical function
 - The uncertainty of parameterization (green band) will be considered as NP
 - Fit the normalization from the data
- Reducible from data driven: $Z + jets, t\bar{t}$
- Others from MC: VVV, ttV

$H \rightarrow ZZ \rightarrow 4\ell$: Control region

- To check the modeling of the background in the control region:
 - m4l between [70GeV, 110GeV] and [140GeV, 200GeV]
 - Using full Run 2 datasets
- No clear shape mismodeling

$H \rightarrow ZZ \rightarrow 4\ell$: VBF classifier for NWA

- Cut-based VBF categorization: $m_{jj} > 400$ GeV, $\left| \Delta \eta_{jj} \right| > 3.3$
 - Standard VBF cuts were also revised and found to be the most optimum in this round
- Re-optimization:
 - Deep neural network
 - Cross check with BDT
- Input variables include leptons and jets kinematics

$H \rightarrow ZZ \rightarrow 4\ell$: Systematics

- Experimental uncertainties:
 - Minitrees ready with all CP systematics included
- Theoretical uncertainties:
 - *qqZZ*, *ggZZ* background modeling:
 - Normalization taken from data
 - Shape systematics from MC by varying QCD scale/PDF/shower
 - Consider acceptance uncertainties for qqZZ, ggZZ
 - Signal acceptance uncertainties: QCD scale/PDF/shower
 - 2% for ggF signals, 10% for VBF signals

$H \rightarrow ZZ \rightarrow 4\ell$: Expected sensitivity

Old: 36.1 fb⁻¹ results (mc15) Old scaled: scaled to 140 fb⁻¹ New: 140 fb⁻¹, mc16

- Fit to $m_{4\ell}$ distribution
- Fit to 4 categories simultaneously: $ggF_{2e2\mu}$, ggF_{4e} , $ggF_{4\mu}$, $VBF_{inclusive}$

$H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$: Cut optimization

- Compared to last round, some optimizations have been made.
- E_T^{miss} -significance is new variable in this round and replace E_T^{miss} /HT.
- Optimization has been done with two variables: E_T^{miss} -significance and $\Delta \phi(Z, E_T^{miss})$
- Additionally, for VBF categorization:
 - Apply selections on additional two leading jets
 - m_{jj} and $|\Delta \eta_{jj}|$

$H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$: Backgrounds

$H \rightarrow ZZ \rightarrow \ell \ell \nu \nu : 3\ell CR$

- One $ee/\mu\mu$ pair + one additional lepton
- Veto any other lepton
- $|m_{\ell\ell}-m_Z| < 15~{\rm GeV}$
- $m_T^W > 60$ GeV and E_T^{miss} -significance > 3 to suppress non-WZ processes
- Purity of WZ sample: $\sim 92\%$
- Use scale factor to constrain the normalization of WZ in signal region

$$SF = \frac{data - nonWZ}{WZ}$$

$H \rightarrow ZZ \rightarrow \ell \ell \nu \nu : e \mu CR$

- Non-resonant $\ell \ell$ backgrounds: $t\overline{t}, WW, Wt, Z \rightarrow \tau \tau$
- *ϵ*-factor represents the reconstruction efficiency difference between electrons and muons:

$$\epsilon = \sqrt{\frac{N_{ee}}{N_{\mu\mu}}}$$

• Apply ϵ -factor on $e\mu$ Data events:

$$N_{SRee}^{estimation} = \frac{1}{2} \times \epsilon \times N_{e\mu}^{data,sub}$$
$$N_{SR\mu\mu}^{estimation} = \frac{1}{2} \times \frac{1}{\epsilon} \times N_{e\mu}^{data,sub}$$

$H \rightarrow ZZ \rightarrow \ell \ell \nu \nu : Z + jets$

- 1D sideband method for $Z \rightarrow ee, Z \rightarrow \mu\mu$ backgrounds
- Control region: E_T^{miss} -significance < 9
- Control region purity: 79%
- Extrapolate to the signal region: $N_{SR}^{estimation} = N_{CR}^{data,sub} \times \frac{N_{SR}^{MC}}{N_{CR}^{MC}}$

$H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$: VBF backgrounds $\mathcal{I}_{0.45}^{\text{M}}$

• WZ

- Based on the inclusive 3²CR, require additional two jets
- Purity ~90%, apply scale factor = 0.84 on the signal region contribution
- Non-resonant $\ell\ell$
 - Require additional two jets, propagate into the VBF signal region:

 $DataDriven(n_j \ge 2) \times \frac{MC(n_j \ge 2; m_{jj} > 550; \Delta \eta_{jj} > 4.4)}{MC(n_j \ge 2)}$

$H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$: Systematics

- (ongoing) Experimental uncertainties
- Theoretical uncertainties:
 - *qqZZ*, *ggZZ* background modeling:
 - Same as 4I: normalization taken from data
 - Shape systematics from MC and acceptance difference between qqZZ and ggZZ

$H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$: Expected sensitivity

• Discriminant for the limit setting: m_T

$$m_T^2 = \left[\sqrt{m_Z^2 + \left|\vec{p}_T^{\ell\ell}\right|^2} + \sqrt{m_Z^2 + \left|\vec{p}_T^{miss}\right|^2}\right]^2 - \left[\vec{p}_T^{\ell\ell} + \vec{p}_T^{miss}\right]^2$$

- Fit to 4 categories simultaneously: ggF_{ee} , $ggF_{\mu\mu}$, VBF_{ee} , $VBF_{\mu\mu}$
- NWA model [dd] [dd] ATLAS Work-in-progress ATLAS Work-in-progress Expected CL limit Expected CL_ limit (ZZ N Z 10 = 13 TeV, 139.0 fb⁻¹ 13 TeV, 139.0 fb⁻¹ **10**⊢ • Statistic uncertainty only NWA, ggF NWA, VBF Expected $\pm 1 \sigma$ Expected $\pm 1 \sigma$ inc inc 95% CL limits on $\sigma_{ge} \times BR(S-1)$ BR(S-Expected \pm 2 σ Expected $\pm 2 \sigma$ × $^{-1}$ CC limits on $^{-1}$ CC limits on $^{-2}$ $^{-2}$ $^{-2}$ $^{-2}$ $^{-3}$ $^{-3}$ ggF **VBF** ر 10^{-3'} 36 500 500 1000 1500 2000 1000 1500 2000 m_s [GeV] m_s [GeV]

Summary and outlook

- The overall status of high mass heavy resonance search in ZZ decay is presented.
- The analysis is in good shape now.
- Ongoing:
 - To finalize the systematic studies for both channels.
 - Combination of two channels for further results.

backup

$$f^{ggZZ,qqZZ,qqZZEW}(m_{4\ell}) = (f_1(m_{4\ell}) + f_2(m_{4\ell})) \times H(m_0 - m_{4\ell}) \times C_0 + f_3^{ggZZ,qqZZ,qqZZEW}(m_{4\ell}) \times H(m_{4\ell} - m_0),$$

where:

$$\begin{split} f_1(m_{4\ell}) &= \exp(a_1 + a_2 \cdot m_{4\ell} + a_3 \cdot m_{4\ell}^2), \\ f_2(m_{4\ell}) &= \left\{ \frac{1}{2} + \frac{1}{2} \operatorname{erf}\left(\frac{m_{4\ell} - b_1}{b_2}\right) \right\} \times \frac{1}{1 + \exp\left(\frac{m_{4\ell} - b_1}{b_3}\right)}, \\ f_3^{qqZZEW}(m_{4\ell}) &= \exp\left(c_1 + c_2 \cdot m_{4\ell} + c_3 \cdot m_{4\ell}^2 + c_4 \cdot m_{4\ell}^{2.7}\right), \\ f_3^{qqZZ,ggZZ}(m_{4\ell}) &= \exp\left(c_1 + c_2 \cdot m_{4\ell} + c_3 \cdot m_{4\ell}^2 + c_4 \cdot m_{4\ell}^3 + c_5 \cdot m_{4\ell}^4 + c_6 \cdot m_{4\ell}^5\right), \\ C_0 &= \frac{f_3(m_0)}{f_1(m_0) + f_2(m_0)}. \end{split}$$

$H \rightarrow ZZ \rightarrow 4\ell$: DNN

- Background events use MC weights that normalize to the same luminosity
- Re-weight signal samples to perfectly match falling background spectrum in training
- Significance and expected limit scan for several DNN cut, and >0.6 was chosen to be the best one

	mH = 300GeV		mH = 700GeV		mH = 1400GeV	
	XS_ggF	XS_VBF	XS_ggF	XS_VBF	XS_ggF	XS_VBF
Cut-based	0.5159	0.2088	0.09836	0.06842	0.03856	0.03453
DNN>0.6	0.4990	0.1669	0.09643	0.06021	0.03838	0.03295
Diff (%)	3.3%	20.1%	2.0%	12.0%	0.5%	4.6%

