Search for resonant production of HH decaying to the bbZZ final state at CMS

Apichart Hortiangtham, on behalf of CMS Collaboration

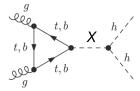
Northeastern University

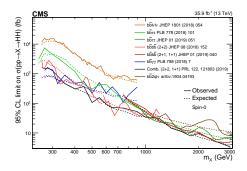
apichart.hortiangtham@cern.ch

July 31, 2019

2019 Meeting of the Division of Particles & Fields of the American Physical Society 29 Jul - 2 Aug 2019, Boston, MA (United States)

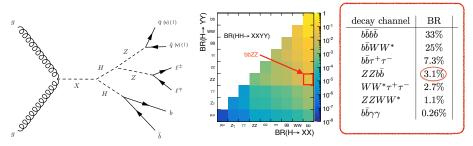
A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A


HH in BSM: Resonant Production


Predicted by several SM extensions:

- MSSM/2HDM
- Warped Extra Dimensions
 - spin-0 radion
 - spin-2 graviton

CMS Experimental Searches:

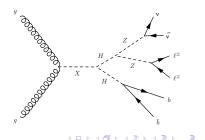

- H \rightarrow bb: chosen for one H boson to keep BR high enough
- Four decay channels for the other H published thus far:
 - $\blacktriangleright~{\rm H} \rightarrow {\rm bb},$ WW, $\tau\tau$, $\gamma\gamma$
- Mass range covered in the searches:
 - 250 3000 GeV
- This talk: the first searches in the bbZZ channel

< ロ > < 同 > < 回 > < 回 >

Resonant HH production in bbZZ decay channel

- X \rightarrow HH \rightarrow bbZZ, using 2016 data (\sqrt{s} =13TeV, 35.9 fb⁻¹)
- Search for a narrow width resonance:
 - spin-0 radion [PhysRevD.62.045015]
 - spin-2 KK graviton [PhysRevLett.84.2080]
 - cover mass range 250-1000 GeV
- Two final states are considered (where $\ell \ell = \mu \mu$, ee):
 - ▶ bbZ(ℓℓ)Z(νν) :CMS-PAS-HIG-17-032
 - ▶ bbZ(ℓℓ)Z(jj) :CMS-PAS-HIG-18-013 [NEW]
 - upper limits calculated for each individual channel and then combined.

$HH \rightarrow bb\ell\ell\nu\nu$: Signature and Backgrounds


- 2 b jets from H \rightarrow bb, 2 leptons from Z, and MET from the other Z.
- HH \rightarrow bbWW \rightarrow bb $\ell\ell\nu\nu$ also enters selections but orthogonality to bbWW analysis is maintained by the requirement that $M_{\ell\ell} > 76$ GeV.

The main backgrounds in this channel are:

- $t\overline{t}$ + jets
- DY+ jets
- $t\bar{t}$ is the most dominant one while DY is more signal-like background.

Other backgrounds are:

- single top quark productions
- diboson+jets
- ZH production

$HH \rightarrow bb\ell\ell\nu\nu$: Analysis Strategy

- Combine $\mu\mu$ and ee channels
- Baseline selections
 - 2 opposite sign leptons
 - ► a pair of b-jets with the highest MVA based b-tagging discriminant value and passing medium working point.
 - ▶ 90 < M_{bb}^H < 150 GeV, 76 < $M_{\ell\ell}$ < 106 GeV (leptonic Z on-shell)
 - $M_T^{HH} > 100 \text{ GeV}$
 - E_T^{miss} cuts which vary with M_X , orthogonal with $bb\ell\ell$ jj analysis
- DY and tt nomalization
 - simultaneously fit of SR and CRs (defined by $M_{\ell\ell}^Z$ and M_{bb}^H)
 - other minor backgrounds taken directly from MC
- BDTs are trained on bbZZ signal vs DY and $t\bar{t}$ events
 - ▶ 2 BDTs are used: low ($M_X \leq 450$ GeV) and high mass regions
 - ▶ 9 variables are used: $M_{\ell\ell}^Z$, M^{ZZ} , M_{bb}^H , $\Delta R_{\ell\ell}$, ΔR_{bb}^H , $p_T^{H_{bb}}$, $p_T^{Z\ell}$, p_T^{ZZ} , E_T^{miss}
 - \blacktriangleright BDT cuts are optimized for each mass hypothesis and each channel (ee/ $\mu\mu$) separately
- M_T^{HH} distribution is used in the fits to extract limits (binned shape analysis)

$HH \rightarrow bb\ell\ell\nu\nu: M_T^{HH}$

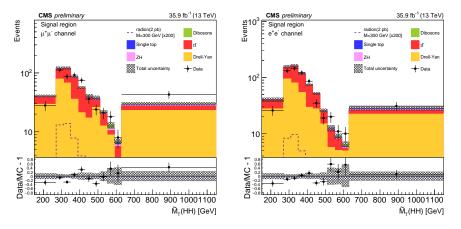


Figure: M_T^{HH} distribution in the muon channel (left) and in the electron channel (right) where the signal is spin-0 radion for the 300 GeV mass hypothesis and is normalized to 2 pb for the pp \rightarrow X \rightarrow HH process.

A D N A B N A B N A B N

$HH \rightarrow bb\ell\ell\nu\nu$: Upper limits

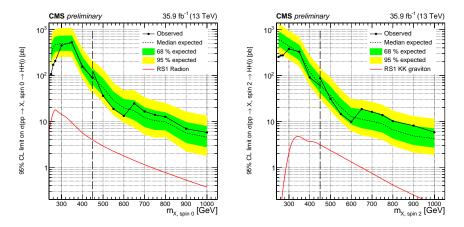
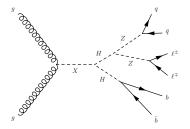


Figure: Expected (black dashed line) and observed (black solid line) limits on the cross section of resonant HH production as a function of the mass of the resonance for the $bb\ell\ell\nu\nu$ channel.

A D N A B N A B N A B N

$HH \rightarrow bb\ell\ell jj$: Signature and Backgrounds


 $\bullet~2$ b jets from H $\!\!\!\rightarrow\!\!\!\!$ bb, 2 leptons from Z, and 2 jets from the other Z

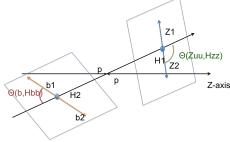
The main backgrounds in this channel are:

- $t\overline{t} + jets$
- DY+ jets
- DY is the larger background, but $t\bar{t}$ is closer kinematically to signal

Other backgrounds are:

- W+jets
- single top quark productions
- diboson+jets
- SM Higgs production
- QCD multijet production

$HH \rightarrow bb\ell\ell jj$: Analysis Strategy


- Combine $\mu\mu$ and ee channels
- Assign 4 jets as H(bb) and Z(jj) using b-tag and kinematic information.
- Baseline selections
 - ▶ 2 opposite sign leptons, $M_{\ell\ell}$ >15 GeV
 - \blacktriangleright 4 jets assigned to H(bb) and Z(jj), at least 1 loose btag jet among the 4 H/Z jets
- Background estimation
 - normalize major backgrounds (DY, $t\bar{t}$) to data in control regions
 - QCD multijets background from data driven approach
 - other minor backgrounds taken directly from MC
- Signal extraction
 - at least 1 medium btag jet among the 4 H/Z jets
 - E_T^{miss} cuts which vary with M_X , orthogonal with $bb\ell\ell\nu\nu$ analysis
 - train BDT discriminant for each signal mass point
- BDT distributions are used in the fits to extract limits (binned shape analysis)

$HH \rightarrow bb\ell\ell j$; BDT Training

- Construct BDT for each of the resonance mass hypotheses.
- Trained with 22 variables:

$$M_{bb}^{H}, M_{jj}^{Z}, M_{\ell\ell}, \Delta \Phi_{\ell 1, p_{T}^{miss}}, \\ \Delta R_{\ell\ell}, \Delta R_{bb}^{H}, \Delta R_{jj}^{Z}, \Delta R_{\ell\ell, bb^{H}}, \\ \Delta R_{\ell\ell, jj^{Z}}, \Delta R_{\ell 1b1}, \Delta R_{\ell 1b2}, \Delta R_{\ell 2b1}, \\ \Delta R_{\ell 2b2}, \Delta R_{\ell 1j1}, \Delta R_{\ell 1j2}, \Delta R_{\ell 2j1}, \\ \text{and } \Delta R_{\ell 2j2}, \\ |cos(\theta_{c}^{*}c)|, |cos(\theta_{L}^{*}, \mu_{L})|, \text{ and }$$

- $|\cos(\theta_{Z\ell\ell,Hzz})|, |\cos(\theta_{Z\ell\ell,Hzz})|,$ $|\phi_1|, |\phi_{1,Zij}|$ (^vb,Hbb)),

Samples used for training:

- Signal and background samples described earlier, QCD multijet is ignored.
- Signal events include samples from the targeted resonance mass and its two neighboring mass points.

A. Hortiangtham (NEU)

$HH \rightarrow bb\ell\ell\ell jj$: BDT Discriminant

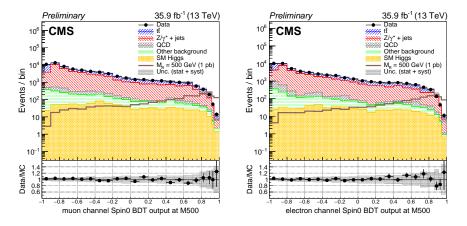


Figure: BDT discriminant in the muon channel (left) and in the electron channel (right) where the signal is spin-0 radion for the 500 GeV mass hypothesis and is normalized to 1 pb for the HH \rightarrow bbZZ \rightarrow bb $\ell\ell$ jj process.

< ロ > < 同 > < 回 > < 回 >

$HH \rightarrow bb\ell\ell$ jj: Upper limits

[NEW]

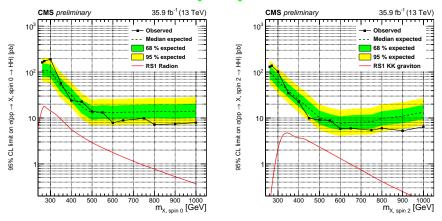


Figure: Expected (black dashed line) and observed (black solid line) limits on the cross section of resonant HH production as a function of the mass of the resonance for the $bb\ell\ell$ jj channel.

A. Hortiangtham (NEU)

July 31, 2019 12 / 18

Final Limits: Combined $bb\ell\ell$ jj and $bb\ell\ell\nu\nu$ channel [NEW]

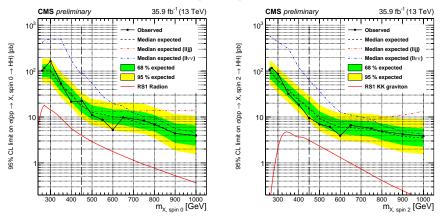


Figure: Expected (black dashed line) and observed (black solid line) limits on the cross section of resonant HH production as a function of the mass of the resonance for the the combination of the $bb\ell\ell jj$ and $bb\ell\ell \nu\nu$ channels.

- First searches for resonant HH in the bbZZ decay channels at CMS presented here:
 - $HH \rightarrow bbZ(\ell\ell)Z(\nu\nu)$
 - HH \rightarrow bbZ($\ell\ell$)Z(jj) [NEW]
- The new channels contribute to the diverse CMS HH program and will be added to the full combination.

Backup

2

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

 $HH \rightarrow bb\ell\ell jj$: H(bb) and Z(jj) Jets Assignment H(bb):

- Find the 2 highest CMVA score jets passing loose WP.
 - If 2 jets are found, done.
 - ▶ If only 1 jet is found, find another jet (without b-score requirement) which give closest invariant mass to M(j1+j2)=125 GeV.
- If not found, pick 2 jets which give closest invariant mass to M(j1+j2)=125 GeV.

Z(jj):

• Pick 2 jets (from the rest) which give closest invariant mass to $M(\ell_1+\ell_2+j1+j2)=125$ GeV as Z(jj).

Table: Efficiency of jet assignment, considering events with 4 reco jets (with generated jet matched).

Mass (GeV)	300	550	900
2 H(bb) jets are correctly assigned	60%	59%	57%
2 Z(jj) jets are correctly assigned	30%	29%	30%

イロト イポト イヨト イヨト 二日

$HH \rightarrow bb\ell\ell jj$: Preselection and Final Selection

- Preselection: (BG-dominated preselection for background determination and validation of control region.
 - 2 opposite sign leptons
 - \star muons with p_T >20(10) GeV, $M_{\mu\mu}$ >15 GeV
 - * electrons with $p_T > 25(15)$ GeV, $M_{ee} > 15$ GeV
 - 4 jets assigned to H(bb) and Z(jj) with $p_T > 20$ GeV
 - at least 1 loose btag jet among the 4 H/Z jets
- Final Selection: (applied for BDT training, also when calculating limits)
 - at least 1 medium btag jet among the 4 H/Z jets
 - E_T^{miss} cuts which vary with mass (in agreement with $bb\ell\ell\nu\nu$ analysis, to keep the two channels orthogonal):
 - * E_T^{miss} < 40 GeV for M_X = 260-300 GeV
 - * E_T^{miss} < 75 GeV for M_X = 350-600 GeV
 - $\star E_T^{miss} < 100 \text{ GeV}$ for $M_X = 650\text{-}1000 \text{ GeV}$

→ □ → → 三 → → 三 → ○ へ ○

$HH \rightarrow bb\ell\ell \ell jj$: HH Angular Variables

- $cos(\theta_{CS}^*)$, θ_{CS}^* is the angle between the higgs momentum and the CS-axis (an axis that bisects the angle between the proton and the opposite of the another proton direction).
- $cos(\theta^*_{b,Hbb})$, $\theta^*_{b,Hbb}$ is the angle between the leading b-jet and the higgs momentum.
- $cos(\theta^*_{Zuu,Hzz})$, $\theta^*_{Zuu,Hzz}$ is the angle between the Z boson decaying to muons and the higgs momentum.
- $\Phi_1,$ angle between z'-z plane and $h{\rightarrow}zz$ decay plane, where z' is the higgs momentum direction.
- $\Phi_{1,Zjj}$, angle between z'_2 -z plane and $Z \rightarrow jj$ decay plane, where z'_2 is the Z (decaying to jj) momentum direction.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへの