R-Parity Violating Supersymmetry and the 125 GeV Higgs signals

Jonathan Cohen
Technion, Israel
jcohen@campus.technion.ac.il

JC, Shaouly Bar-Shalom (Technion), Gad Eilam (Technion) & Amarjit Soni (BNL)

arXiv:1906.04743

Outline

- Motivation
- The RPV SUSY framework
- The 125 GeV Higgs signals
- Bilinear RPV
- Trilinear RPV
- Summary

Motivation

Higgs discovery Higgs precision measurements

 Patterns of deviations in Higgs signals may shed light on underlying NP where Higgs plays a central role:

SUSY, Composite Higgs, SMEFT, Higgs-portal...

 However, non-observation of SUSY particles pushes typical SUSY scale to the multi-TeV range...

Motivation

Heavy SUSY + Decoupling Limit provides natural setting for RPV SUSY:

- > 125 GeV Higgs mass obtained from heavy squarks
- RPV bounds relaxed by heavy sleptons/squarks
- > RPC effect on Higgs signals is negligible at decoupling limit
- Can generically generate neutrino masses in RPV SUSY
- Experimentally, bounds from traditional SUSY searches do not necessarily apply

ullet Construct additional RPV interactions by replacing $\hat{H}_d o \hat{L}$ in $\mathcal{W}_{ ext{RPC}}$

Assume 3rd gen RPV & define RPV "measures":

$$\delta_B \equiv \frac{B_{\epsilon}}{B_{\mu}} \; , \; \delta_{\epsilon} \equiv \frac{\epsilon}{\mu}$$

 $(B_{\epsilon})_3$, $\epsilon_3 \neq 0$

• The induced CP-even scalar mass matrix in the $(H_d,\,H_u\,,\, ilde
u_ au)^T$ basis:

$$m_{E}^{2} = \begin{pmatrix} s_{\beta}^{2} m_{A}^{2} + m_{Z}^{2} c_{\beta}^{2} + \delta_{11}^{t-\tilde{t}} & -s_{\beta} c_{\beta} m_{A}^{2} - m_{Z}^{2} s_{\beta} c_{\beta} + \delta_{12}^{t-\tilde{t}} & -\delta_{B} m_{A}^{2} s_{\beta}^{2} \\ -s_{\beta} c_{\beta} m_{A}^{2} - m_{Z}^{2} s_{\beta} c_{\beta} + \delta_{12}^{t-\tilde{t}} & c_{\beta}^{2} m_{A}^{2} + m_{Z}^{2} s_{\beta}^{2} + \delta_{22}^{t-\tilde{t}} & \delta_{B} m_{A}^{2} s_{2\beta}/2 \\ -\delta_{B} m_{A}^{2} s_{\beta}^{2} & \delta_{B} m_{A}^{2} s_{2\beta}/2 & m_{\tilde{\nu}_{\tau}}^{2} \end{pmatrix}$$

- We interpret the observed 125 GeV Higgs as the lightest Higgs-sneutrino mixed state h_{RPV}
- Assume the decoupling limit $m_A^2 \gg m_Z^2$
- Assume heavy (multi-TeV) sfermion soft-masses

• The induced CP-even scalar mass matrix in the $(H_d,\,H_u\,,\, ilde
u_ au)^T$ basis:

$$m_{E}^{2} = \begin{pmatrix} s_{\beta}^{2}m_{A}^{2} + m_{Z}^{2}c_{\beta}^{2} + \delta_{11}^{t-\tilde{t}} & -s_{\beta}c_{\beta}m_{A}^{2} - m_{Z}^{2}s_{\beta}c_{\beta} + \delta_{12}^{t-\tilde{t}} \\ -s_{\beta}c_{\beta}m_{A}^{2} - m_{Z}^{2}s_{\beta}c_{\beta} + \delta_{12}^{t-\tilde{t}} & c_{\beta}^{2}m_{A}^{2} + m_{Z}^{2}s_{\beta}^{2} + \delta_{22}^{t-\tilde{t}} \end{pmatrix}^{\tilde{t}} & -\delta_{B}m_{A}^{2}s_{\beta}^{2} \\ -\delta_{B}m_{A}^{2}s_{\beta}^{2} & c_{\beta}m_{A}^{2} + m_{Z}^{2}s_{\beta}^{2} + \delta_{22}^{t-\tilde{t}} \end{pmatrix}^{\tilde{t}} & \delta_{B}m_{A}^{2}s_{2\beta}/2 \\ -\delta_{B}m_{A}^{2}s_{\beta}^{2} & \delta_{B}m_{A}^{2}s_{2\beta}/2 & m_{\tilde{\nu}_{\tau}}^{2} \end{pmatrix}$$

"2X2 RPC block"

• The induced CP-even scalar mass matrix in the $(H_d,\,H_u\,,\, ilde
u_ au)^T$ basis:

$$m_{E}^{2} = \begin{pmatrix} s_{\beta}^{2}m_{A}^{2} + m_{Z}^{2}c_{\beta}^{2} + \overbrace{\delta_{11}^{t-t}} & -s_{\beta}c_{\beta}m_{A}^{2} - m_{Z}^{2}s_{\beta}c_{\beta} + \overbrace{\delta_{12}^{t-t}} & -\delta_{B}m_{A}^{2}s_{\beta}^{2} \\ -s_{\beta}c_{\beta}m_{A}^{2} - m_{Z}^{2}s_{\beta}c_{\beta} + \overbrace{\delta_{12}^{t-t}} & c_{\beta}^{2}m_{A}^{2} + m_{Z}^{2}s_{\beta}^{2} + \overbrace{\delta_{22}^{t-t}} & \delta_{B}m_{A}^{2}s_{2\beta}/2 \\ -\delta_{B}m_{A}^{2}s_{\beta}^{2} & \delta_{B}m_{A}^{2}s_{2\beta}/2 & m_{\tilde{\nu}_{\tau}}^{2} \end{pmatrix}$$

• Top-stop loop corrections necessary to lift Higgs mass (δ_{ij}^{t-t})

• The induced CP-even scalar mass matrix in the $(H_d,\,H_u\,,\, ilde
u_ au)^T$ basis:

$$m_{E}^{2} = \begin{pmatrix} s_{\beta}^{2}m_{A}^{2} + m_{Z}^{2}c_{\beta}^{2} + \delta_{11}^{t-\tilde{t}} & -s_{\beta}c_{\beta}m_{A}^{2} - m_{Z}^{2}s_{\beta}c_{\beta} + \delta_{12}^{t-\tilde{t}} & -\delta_{B}m_{A}^{2}s_{\beta}^{2} \\ -s_{\beta}c_{\beta}m_{A}^{2} - m_{Z}^{2}s_{\beta}c_{\beta} + \delta_{12}^{t-\tilde{t}} & c_{\beta}^{2}m_{A}^{2} + m_{Z}^{2}s_{\beta}^{2} + \delta_{22}^{t-\tilde{t}} & \delta_{B}m_{A}^{2}s_{2\beta}/2 \\ -\delta_{B}m_{A}^{2}s_{\beta}^{2} & \delta_{B}m_{A}^{2}s_{2\beta}/2 \end{pmatrix}$$

- Top-stop loop corrections necessary to lift Higgs mass (δ_{ij}^{t-t})
- New BRPV terms generating Higgs-sneutrino mixing (δ_B)

Higgs decays to gauginos

• Similarly $\delta_{\epsilon} \equiv \frac{\epsilon}{\mu}$ will generate neutrino-neutralino & lepton-chargino mixing in the gaugino sectors:

Leptonic Higgs decays

BRPV effect in Higgs coupling to leptons:

• For 2nd gen BRPV: $\tau \to \mu$ BRPV effect in $h \to \mu^+ \mu^-$

The 125 GeV Higgs signals

@ 13 TeV

ATLAS	+ CMS
-------	-------

• Notation:
$$\mu_{if}^{(P)} \equiv \mu_i^{(P)} \cdot \mu_f \cdot \frac{\Gamma_{SM}^h}{\Gamma^h}$$

$$\mu_i^{(P)} = \frac{\sigma(i \to h)}{\sigma(i \to h)_{SM}} \ , \ \mu_f = \frac{\Gamma(h \to f)}{\Gamma(h \to f)_{SM}}$$

111211	C1112
$\mu_{Vbb}^{(hV/hW)}$	$1.07^{+0.23}_{-0.22}$
$\mu_{Vbb}^{(hZ)}$	$1.20^{+0.33}_{-0.31}$
$\mu_{FWW}^{(gg)}$	$1.24^{+0.15}_{-0.16}$
$\mu_{FZZ}^{(gg)}$	$1.09_{-0.11}^{+0.11}$
$\mu_{F\gamma\gamma}^{(gg)}$	$1.02_{-0.11}^{+0.12}$
$\mu_{F au au}^{(gg)}$	$1.06_{-0.37}^{+0.40}$
$\mu_{V\gamma\gamma}^{(VBF)}$	$1.10_{-0.31}^{+0.36}$
$\mu_{V\tau\tau}^{(VBF)}$	$1.15_{-0.34}^{+0.36}$
$\mu_{F\mu\mu}^{(gg)}$	$0.55^{+0.70}_{-0.70}$

Recently measured signal strength in $h \to \mu\mu$

The 125 GeV Higgs signals

• Notation:
$$\mu_{if}^{(P)} \equiv \mu_i^{(P)} \cdot \mu_f \cdot \frac{\Gamma_{SM}^h}{\Gamma^h}$$

$$\mu_i^{(P)} = \frac{\sigma(i \to h)}{\sigma(i \to h)_{SM}} , \quad \mu_f = \frac{\Gamma(h \to f)}{\Gamma(h \to f)_{SM}}$$

In the BRPV scenario:

Production:

$$\mu_F^{(gg)} = \frac{\Gamma(h \to gg)}{\Gamma(h \to gg)_{SM}} \,,$$

$$\mu_V^{(hV)} = \mu_V^{(VBF)} = \left(g_{hVV}^{RPC}\right)^2 \,$$

$$\langle \tilde{\nu}_\tau \rangle = v_{\tilde{\nu}_\tau} = 0 \,$$

$$\text{no-"vev" basis}$$

Decay:

$$\mu_{bb} = \left(g_{hbb}^{RPC}\right)^{2},$$

$$\mu_{VV^{\star}} = \left(g_{hVV}^{RPC}\right)^{2},$$

$$\mu_{\mu\mu/\tau\tau} = \frac{\Gamma(h \to \mu^{+}\mu^{-}/\tau^{+}\tau^{-})}{\Gamma(h \to \mu^{+}\mu^{-}/\tau^{+}\tau^{-})_{SM}},$$

$$\mu_{\gamma\gamma} = \frac{\Gamma(h \to \gamma\gamma)}{\Gamma(h \to \gamma\gamma)_{SM}}$$

@ 13 TeV

ATLAS -	- CMS

$\mu_{Vbb}^{(hV/hW)}$	$1.07_{-0.22}^{+0.23}$
$\mu_{Vbb}^{(hZ)}$	$1.20^{+0.33}_{-0.31}$
$\mu_{FWW}^{(gg)}$	$1.24^{+0.15}_{-0.16}$
$\mu_{FZZ}^{(gg)}$	$1.09^{+0.11}_{-0.11}$
$\mu_{F\gamma\gamma}^{(gg)}$	$1.02^{+0.12}_{-0.11}$
$\mu_{F au au}^{(gg)}$	$1.06^{+0.40}_{-0.37}$
$\mu_{V\gamma\gamma}^{(VBF)}$	$1.10^{+0.36}_{-0.31}$
$\mu_{V\tau\tau}^{(VBF)}$	$1.15^{+0.36}_{-0.34}$
$\mu_{F\mu\mu}^{(gg)}$	$0.55^{+0.70}_{-0.70}$
	13

BRPV – numerical setup

• To quantify the impact of BRPV on the Higgs signals we perform numerical simulations

 We randomly vary the input parameters within fixed ranges (ranges further refined for optimization purposes)

• Consider light gaugino states of $\mathcal{O}(100~{\rm GeV})$ in cases where $h \to \nu_{\tau} \tilde{\chi}_2^0$ / $\tau^{\pm} \chi_2^{\mp}$

Input parameters

Range			
δ_{ϵ}	[0, 0.5]		
μ	[90, 1000]	$[\mathrm{GeV}]$	
M_1	[100,2500]	[GeV]	
M_2	[100,2500]	[GeV]	
$t_{oldsymbol{eta}}$	[2, 30]		
δ_B	[0, 0.5]		
m_A	[1000, 10000]	$[\mathrm{GeV}]$	
$m_{\tilde{ u}_{ au}}$	[200, 800]	$[\mathrm{GeV}]$	
$m_{ ilde{q}}$	[1000, 8000]	[GeV]	
$ ilde{A}$	[0, 4000]	[GeV]	
$m_{ ilde{b}_{RR}}$	[2000, 5000]	[GeV]	
$m_{\tilde{ au}_{RR}}$	[1000, 5000]	[GeV]	

BRPV - "filters"

- <u>Higgs mass</u>: $122\,{
 m GeV} < m_h^{calc} < 128\,{
 m GeV}$ Allow for $\pm 3\,{
 m GeV}$ theoretical uncertainty in m_h^{calc}
- Neutrino mass: $m_{\nu_{\mu}} < 0.19 \,\, {
 m MeV}$ (2nd gen BRPV) or $m_{\nu_{\tau}} < 18.2 \,\, {
 m MeV}$ (3rd gen BRPV) Strongest constraints on BRPV parameters arise @ tree-level $m_{\nu} \propto \delta_{\epsilon}^2$ & 1-loop

• Higgs signals: Require them to agree with measurements @ 2σ level

BRPV Higgs decays $h \rightarrow \nu_{\tau} \tilde{\chi}_{2}^{0} / \tau^{\pm} \chi_{2}^{\mp}$

- S1A: gaugino-like scenario $M_2 \ll \mu$ & nearly degenerate neutralino-chargino, $m_{\tilde{\chi}^0_2} \simeq m_{\chi^\pm_2} < m_h$
- S1B: higgsino-like scenario $\mu \ll M_2$ & nearly degenerate neutralino-chargino, $m_{\tilde{\chi}^0_2} \simeq m_{\chi^\pm_2} < m_h$
- S2: $m_{\tilde{\chi}_2^0} < m_h < m_{\chi_2^\pm}$ such that only $h \to \nu_{\tau} \tilde{\chi}_2^0$ is kinematically allowed (broken degeneracy)
- S3: Hierarchy $\mu \sim M_1 \ll M_2$ with $m_{\tilde{\chi}_2^0} < m_{\chi_2^\pm} \lesssim m_h$ (broken degeneracy)

BRPV Higgs decays $h \rightarrow \nu_{\tau} \tilde{\chi}_{2}^{0} / \tau^{\pm} \chi_{2}^{\mp}$

Benchmarks chosen so as to maximize the BRPV effect

	BM1A	BM1B	BM2	ВМЗ	
$h \to \nu_{\tau} \tilde{\chi}_{2}^{0} \leftarrow \Gamma^{\nu \tilde{\chi}}$	0.159	0.06	0.189	0.61	[MeV]
$h \to \tau^{\pm} \chi_2^{\mp} - \Gamma^{\tau \chi}$	0.158	0.09	0	0.002	$[\mathrm{MeV}]$

Will affect Higgs signals via Γ^h

BRPV Higgs decays $h \to \nu_{\tau} \tilde{\chi}_{2}^{0} / \tau^{\pm} \chi_{2}^{\mp}$

- O(25%) deviation in di-photon channels due to light charginos in BM1A
- $\mathcal{O}(20\%)$ deviation in di-tau channels in BM1B
- No significant deviation from SM in BM2
- $h \to \tau^+\tau^-$ & $h \to b\bar{b}$ sensitive to BM3

	BM1A	BM1B	BM2	ВМЗ
$\mu_{F\gamma\gamma}^{(gg)}$	1.24	1.09	0.99	1.01
$\mu_{FZZ}^{(gg)}$	0.92	0.92	0.92	0.92
$\mu_{FWW}^{(gg)}$	0.92	0.92	0.92	0.92
$\mu_{F\tau\tau}^{(gg)}$	0.91	0.77	0.92	0.82
$\mu_{F\mu\mu}^{(gg)}$	0.92	0.97	0.96	0.96
$\mu_{Vbb}^{(hV)}$	0.92	0.98	0.97	0.88
$\mu_{V\gamma\gamma}^{(VBF)}$	1.24	1.10	1.00	0.93
$\mu_{V\tau\tau}^{(VBF)}$	0.92	0.78	0.93	0.75

BRPV Higgs decays $h \rightarrow \nu_{\tau} \tilde{\chi}_{2}^{0} / \tau^{\pm} \chi_{2}^{\mp}$

- O(25%) deviation in di-photon channels due to light charginos in BM1A
- $\mathcal{O}(20\%)$ deviation in di-tau channels in BM1B
- No significant deviation from SM in BM2
- $h \to \tau^+ \tau^-$ & $h \to b\bar{b}$ sensitive to BM3
- For the subsequent gaugino decays we find:

$$BR(\chi_2^+ \to \nu W^+), \ BR(\tilde{\chi}_2^0 \to \tau^- W^+) \gtrsim 90\%$$

Extra handle: ($\ell=e,\mu, au$)

$$\mu_{\tau\ell+E_T} \equiv \frac{\Gamma(h \to \tau^{\pm}\ell^{\mp} + E_T)}{\Gamma(h \to \tau^{\pm}\ell^{\mp} + E_T)_{SM}} \sim 2.5 - 7$$

several times larger than the expected SM signal

	BM1A	BM1B	BM2	ВМЗ
$\mu_{F\gamma\gamma}^{(gg)}$	1.24	1.09	0.99	1.01
$\mu_{FZZ}^{(gg)}$	0.92	0.92	0.92	0.92
$\mu_{FWW}^{(gg)}$	0.92	0.92	0.92	0.92
$\mu_{F\tau\tau}^{(gg)}$	0.91	0.77	0.92	0.82
$\mu_{F\mu\mu}^{(gg)}$	0.92	0.97	0.96	0.96
$\mu_{Vbb}^{(hV)}$	0.92	0.98	0.97	0.88
$\mu_{V\gamma\gamma}^{(VBF)}$	1.24	1.10	1.00	0.93
$\mu_{V\tau\tau}^{(VBF)}$	0.92	0.78	0.93	0.75

Leptonic BRPV Higgs decays $h \rightarrow \mu^{+}\mu^{-}$ & $h \rightarrow \tau^{+}\tau^{-}$

- Better sensitivity when $m_{ ilde{\chi}^0_2}, m_{\chi^+_2} > m_h$ (no gaugino channels)
- Leptonic Higgs decays are suppressed by 25% primarily due to lepton-chargino BRPV mixing whereas RPC SUSY effect is negligible at decoupling
- Particularly interesting signals of BRPV since all other channels are SM-like

	2 nd gen BRPV	3 rd gen BRPV
	$\mathtt{BM}\mu$	$\mathtt{BM}\tau$
$\mu_{F\gamma\gamma}^{(gg)}$	1.00	1.02
$\mu_{FZZ}^{(gg)}$	0.98	1.00
$\mu_{FWW}^{(gg)}$	0.98	1.00
$\mu_{F au au}^{(gg)}$	0.99	0.73
$\mu_{F\mu\mu}^{(gg)}$	0.75	1.01
$\mu_{Vbb}^{(hV)}$	1.00	1.02
$\mu_{V\gamma\gamma}^{(VBF)}$	1.01	1.02
$\mu_{V au au}^{(VBF)}$	1.00	0.73

Trilinear RPV

$$\lambda'_{333}$$
 λ'_{311} λ_{233} λ_{322}
 $\tilde{\nu}_{\tau}\bar{b}b$ $\tilde{\nu}_{\tau}\bar{d}d$ $\tilde{\nu}_{\mu}\tau^{+}\tau^{-}$ $\tilde{\nu}_{\tau}\mu^{+}\mu^{-}$

Assume one-parameter scheme and $\delta_{\epsilon}=0$

TRPV

• $\delta_B \cdot \lambda'$ effects:

 λ'_{333} TRPV effect expected in $h \to b \bar{b}$

$$\Lambda_{hb\bar{b}} = g_b^{SM} \left(g_{hb\bar{b}}^{RPC} + \frac{\lambda'_{333} Z_{h3}}{\sqrt{2} g_b^{SM}} \right)$$
$$g_b^{SM} = \frac{m_b}{v}, \ g_{hb\bar{b}}^{RPC} \equiv \frac{Z_{h1}}{c_{\beta}}$$

Additional Higgs production via $d\overline{d}$ fusion

$$\mu_F^{(gg+dd)} \equiv \frac{\sigma(gg \to h) + \sigma(d\bar{d} \to h)}{\sigma(gg \to h)_{SM}} = \mu_F^{(gg)} + \frac{\sigma(d\bar{d} \to h)}{\sigma(gg \to h)_{SM}}$$

$$\frac{\sigma(d\bar{d} \to h)}{\sigma(gg \to h)_{SM}} \simeq 0.73 \left(\kappa_d^{TRPV}\right)^2 ,$$

$$\kappa_d^{TRPV} \equiv \frac{\lambda'_{311} Z_{h3}}{\sigma(gg \to h)_{SM}} .$$
22

TRPV: $\delta_B \cdot \lambda'$ effects ($\delta_{\epsilon} = 0$)

Corresponding bounds for 1 TeV RR squark soft mass terms

- ${\rm BM}\lambda'_{333}$ * Enhanced di-photon rate due to light charginos Only mild enhancement in bottom channel (y_b dominated)

 ${\rm BM}\lambda'_{311} \begin{cases} \bullet & \text{Overall increase in (previously) gluon-fusion initiated} \\ \text{channels from new } d\bar{d} \to h \text{ production mechanism} \\ \bullet & \text{Overall decrease in } \mu_{Vjj} \text{ (suppressed by total width)} \end{cases}$

	${\rm BM}\lambda_{333}'$	${\rm BM}\lambda_{311}'$
$\mu_{F\gamma\gamma}^{(gg)}$	1.26	1.11
$\mu_{FZZ}^{(gg)}$	0.92	1.09
$\mu_{FWW}^{(gg)}$	0.92	1.09
$\mu_{F au au}^{(gg)}$	0.93	1.51
$\mu_{F\mu\mu}^{(gg)}$	0.93	1.51
$\mu_{Vbb}^{(hV)}$	1.04	$\boxed{0.71}$
$\mu_{V\gamma\gamma}^{(VBF)}$	1.27	0.48
$\mu_{V\tau\tau}^{(VBF)}$	0.94	0.65

TRPV

• $\delta_B \cdot \lambda$ effects:

 λ_{322} TRPV effect expected in $~h
ightarrow \mu^+ \mu^-$

$$\Lambda_{h\mu\mu} = g_{\mu}^{SM} \left(g_{h\mu\mu}^{RPC} + \frac{\lambda_{322} Z_{h3}}{\sqrt{2} g_{\mu}^{SM}} \right)$$

$$\lambda_{233}$$
 TRPV effect expected in $h \to \tau^+ \tau^-$

$$\Lambda_{h\tau\tau} = g_{\tau}^{SM} \left(g_{h\tau\tau}^{RPC} + \frac{\lambda_{233} Z_{h3}}{\sqrt{2} g_{\tau}^{SM}} \right)$$

(where
$$g_l^{SM}=rac{m_l}{v}$$
 , $g_{hll}^{RPC}=rac{Z_{h1}}{c_{eta}}$)

TRPV: $\delta_B \cdot \lambda$ effects ($\delta_{\epsilon} = 0$)

Corresponding bounds for 1 TeV RR slepton soft mass terms

DM \	Enhanced TRPV di-tau rate
BM ∧233 <	• Enhanced TRPV di-tau rate • Rest of Higgs signals mildly suppressed due to enlarged Γ^h

 ${
m BM}\lambda_{322}$ $\Big<$ • Di-muon channel nearly doubled while the rest are SM-like

In RPC (Decoupling) $\mu_{F\tau\tau,V\tau\tau}(\lambda_{233}=0)\sim 1$, $\mu_{F\mu\mu}^{(gg)}(\lambda_{322}=0)\sim 1$

		1
	${\rm BM}\lambda_{233}$	${\tt BM}\lambda_{322}$
$\mu_{F\gamma\gamma}^{(gg)}$	0.94	1.04
$\mu_{FZZ}^{(gg)}$	0.92	0.99
$\mu_{FWW}^{(gg)}$	0.92	0.99
$\mu_{F au au}^{(gg)}$	1.85	0.99
$\mu_{F\mu\mu}^{(gg)}$	0.94	1.96
$\mu_{Vbb}^{(hV)}$	0.94	1.00
$\mu_{V\gamma\gamma}^{(VBF)}$	0.95	1.05
$\mu_{V\tau\tau}^{(VBF)}$	1.86	1.00

Summary

- We've studied the impact of RPV on the Higgs signals, under:
 - Multi-TeV sfermion soft masses
 - Decoupling limit in the Higgs sector (RPC ~ SM in Higgs signals)
 - Single-flavor (mostly 3rd gen) BRPV generating Higgs-sneutrino, neutrino-neutralino & lepton-chargino mixings

(no such effect in the RPC decoupling SUSY)

- $\begin{tabular}{|c|c|c|c|c|} \hline TRPV & & \succ Gluon-fusion Higgs production mode roughly doubled by $d\bar{d} \to h$ \\ & \succ Large deviations of up to $\mathcal{O}(100\%)$ are expected in $h \to \mu^+\mu^-, \tau^+\tau^-$ \\ \hline \end{tabular}$

Summary

Expected RPV effects on the Higgs signals:

	Production mode			
Decay Mode	$gg \rightarrow h$	hV	VBF	
$h \to \gamma \gamma$	$\mu_{F\gamma\gamma}^{(gg)} \sim 1.26, \ \mathrm{BM}\lambda_{333}'$	-	$\mu_{V\gamma\gamma}^{(VBF)}\sim 0.48,~{\rm BM}\lambda_{311}'$	
$h o ZZ^{\star}$	$\operatorname{SM-like}$	-	-	
$h \to WW^{\star}$	SM-like	-	-	
$h \to b\overline{b}$	-	$\mu_{Vbb}^{(hV)} \sim 0.71, \ \mathrm{BM}\lambda_{311}'$	-	
	$\mu_{F\tau\tau}^{(gg)} \sim \begin{cases} 0.73, & \text{BM}\tau\\ 1.85, & \text{BM}\lambda_{233} \end{cases}$	-	$\mu_{V au au}^{(VBF)} \sim egin{cases} 0.65, & { m BM}\lambda_{311}' \ 1.85, & { m BM}\lambda_{233} \end{cases}$	
			$1.85, \text{ BM}\lambda_{233}$	
$h \to \mu^+ \mu^-$	$\int 0.75$, BM μ	_	-	
	$\mu_{F\mu\mu} \sim 1.96$, BM λ_{322}			

$$+ \mu_{\tau\ell+\!E_T} \equiv \frac{\Gamma(h\to\tau^\pm\ell^\mp+\!E_T)}{\Gamma(h\to\tau^\pm\ell^\mp+\!E_T)_{SM}} \sim 2.5-7 \quad \text{, BM1A-BM3}$$

TRPV bounds arise e.g. from universality tests in rare lepton decays:

$$\lambda_{233}$$
 , λ_{322}
$$\begin{bmatrix} R_{\tau} = \Gamma(\tau \to e\nu\bar{\nu})/\Gamma(\tau \to \mu\nu\bar{\nu}) \\ R_{\tau\mu} = \Gamma(\tau \to \mu\nu\bar{\nu})/\Gamma(\mu \to e\nu\bar{\nu}) \end{bmatrix}$$

$$\lambda'_{333}$$
 $R_l = \Gamma(Z \to \text{had})/\Gamma(Z \to l\bar{l})$

$$\lambda_{311}'$$
 $R_{\tau\pi} = \Gamma(\tau \to \pi \nu_{\tau})/\Gamma(\pi \to \mu \nu_{\mu})$

Minima conditions:

1)
$$m_{H_d}^2 v_d - v_u B_\mu + \frac{1}{8} (g_1^2 + g_2^2) v_d (-v_u^2 + v_d^2) + |\mu|^2 v_d = 0$$

2)
$$-\frac{1}{8} \left(g_1^2 + g_2^2\right) v_u \left(-v_u^2 + v_d^2\right) + \frac{1}{2} \left(-2v_d B_\mu + 2v_u \left(m_{H_u}^2 + |\mu|^2 + |\epsilon_3|^2\right)\right) = 0$$

3)
$$(m_{LH}^2)_3 + (B_\epsilon)_3 \tan \beta - \epsilon_3 \mu = 0$$

- CP-even scalar mass matrix aspects and features
- Diagonlized by unitary matrix:

$$Z^{E} = \begin{pmatrix} Z_{h1} & Z_{H1} & Z_{\tilde{\nu}1} \\ Z_{h2} & Z_{H2} & Z_{\tilde{\nu}2} \\ Z_{h3} & Z_{H3} & Z_{\tilde{\nu}3} \end{pmatrix}$$

$$Z^{E} = \begin{pmatrix} Z_{h1} & Z_{H1} & Z_{\tilde{\nu}1} \\ Z_{h2} & Z_{H2} & Z_{\tilde{\nu}2} \\ Z_{h3} & Z_{H3} & Z_{\tilde{\nu}3} \end{pmatrix} \qquad \begin{pmatrix} H_{d} = Z_{h1}h_{RPV} + Z_{H1}H_{RPV} + Z_{\tilde{\nu}1}\tilde{\nu}_{RPV} \\ H_{u} = Z_{h2}h_{RPV} + Z_{H2}H_{RPV} + Z_{\tilde{\nu}2}\tilde{\nu}_{RPV} \\ \tilde{\nu}_{RPC} = Z_{h3}h_{RPV} + Z_{H3}H_{RPV} + Z_{\tilde{\nu}3}\tilde{\nu}_{RPV} \end{pmatrix}$$

- Lightest state identified as Higgs
- BRPV communicated via sneutrino component $Z_{h3} = Z_{h3}(\delta_B)$
- Z_{h1} and Z_{h2} at leading order are the same as RPC-elements

CP-odd scalar mass matrix

$$m_{O}^{2} = \begin{pmatrix} s_{\beta}^{2} m_{A}^{2} & m_{A}^{2} s_{\beta} c_{\beta} & -\delta_{B} m_{A}^{2} s_{\beta}^{2} \\ m_{A}^{2} s_{\beta} c_{\beta} & c_{\beta}^{2} m_{A}^{2} & -\delta_{B} m_{A}^{2} s_{\beta} c_{\beta} \\ -\delta_{B} m_{A}^{2} s_{\beta}^{2} & -\delta_{B} m_{A}^{2} s_{\beta} c_{\beta} & m_{\tilde{\nu}_{\tau}}^{2} \end{pmatrix}$$

where we used the RPC relation $m_A^2 \equiv \csc \beta \sec \beta B_{\mu}$

Massless state corresponds to the GB

• The neutralino sector in the $(\nu_{\tau}, \tilde{B}, \tilde{W}, \tilde{H}_d, \tilde{H}_u)$ basis

$$m_{N} = \begin{pmatrix} m_{\nu_{\tau}})_{loop}^{\delta_{B}\delta_{B}} + m_{\nu_{\tau}})_{loop}^{\delta_{B}\delta_{\epsilon}} & 0 & 0 & 0 & \delta_{\epsilon}\mu \\ 0 & M_{1} & 0 & -m_{Z}s_{W}c_{\beta} & m_{Z}s_{W}s_{\beta} \\ 0 & 0 & M_{2} & m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} \\ 0 & -m_{Z}s_{W}c_{\beta} & m_{Z}c_{W}c_{\beta} & 0 & -\mu \\ \delta_{\epsilon}\mu & m_{Z}s_{W}s_{\beta} & -m_{Z}c_{W}s_{\beta} & -\mu & 0 \end{pmatrix}$$

BRPV loop contributions to neutrino mass:

• The neutralino sector in the $(\nu_{\tau}, \tilde{B}, \tilde{W}, \tilde{H}_d, \tilde{H}_u)$ basis

$$m_{N} = \begin{pmatrix} (m_{\nu_{\tau}})_{loop}^{\delta_{B}\delta_{B}} + (m_{\nu_{\tau}})_{loop}^{\delta_{B}\delta_{\epsilon}} & 0 & 0 & 0 & \delta_{\epsilon}\mu \\ 0 & M_{1} & 0 & -m_{Z}s_{W}c_{\beta} & m_{Z}s_{W}s_{\beta} \\ 0 & 0 & M_{2} & m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} \\ 0 & -m_{Z}s_{W}c_{\beta} & m_{Z}c_{W}c_{\beta} & 0 & -\mu \\ \delta_{\epsilon}\mu & m_{Z}s_{W}s_{\beta} & -m_{Z}c_{W}s_{\beta} & -\mu & 0 \end{pmatrix}$$

New BRPV terms generating neutrino-neutralino mixing:

• The chargino sector in the $(\tau_L, \tilde{W}^-, \tilde{H}_d^-), (\tau_R, \tilde{W}^+, \tilde{H}_u^+)$ basis

$$m_c = \begin{pmatrix} m_{\tau} & 0 & -\delta_{\epsilon}\mu \\ 0 & M_2 & \sqrt{2}m_W s_{\beta} \\ 0 & \sqrt{2}m_W c_{\beta} & \mu \end{pmatrix}$$

New BRPV term generating tau-chargino mixing:

• For 2nd gen BRPV will generate muon-chargino mixing $\tau \to \mu$

$$\tau \stackrel{\vee}{\rightarrow} \mu$$

• Charged Higgs – Slepton sector in the basis $\left(H_d^-, H_u^+, ilde{ au}_L, ilde{ au}_R
ight)$

$$m_{\tilde{\tau}}^{2} = \begin{pmatrix} m_{W}^{2} s_{\beta}^{2} + m_{A}^{2} s_{\beta}^{2} & m_{W}^{2} s_{\beta} c_{\beta} + \frac{1}{2} m_{A}^{2} s_{2\beta} & -\delta_{B} s_{\beta}^{2} m_{A}^{2} & -\delta_{\epsilon} \mu m_{\tau} t_{\beta} \\ m_{W}^{2} s_{\beta} c_{\beta} + \frac{1}{2} m_{A}^{2} s_{2\beta} & m_{W}^{2} c_{\beta}^{2} + m_{A}^{2} c_{\beta}^{2} & -\frac{1}{2} \delta_{B} m_{A}^{2} s_{2\beta} & -\delta_{\epsilon} \mu m_{\tau} \\ -\delta_{B} s_{\beta}^{2} m_{A}^{2} & -\frac{1}{2} \delta_{B} m_{A}^{2} s_{2\beta} & m_{\tau}^{2} + m_{\tilde{\nu}_{\tau}}^{2} - m_{W}^{2} \left(c_{\beta}^{2} - s_{\beta}^{2} \right) & \left(A_{\tau} - \mu t_{\beta} \right) m_{\tau} \\ -\delta_{\epsilon} \mu m_{\tau} t_{\beta} & -\delta_{\epsilon} \mu m_{\tau} & \left(A_{\tau} - \mu t_{\beta} \right) m_{\tau} & m_{\tau}^{2} + m_{\tilde{\tau}_{RR}}^{2} - \frac{1}{4} g_{1}^{2} v \left(c_{\beta}^{2} - s_{\beta}^{2} \right) \end{pmatrix}$$

- New BRPV Charged Higgs Slepton mixing terms
- Relative effect of D-terms is larger than in squark sector

BRPV – numerical setup (details)

• Assume common left-handed soft squark mass $m_{ ilde{q}} ilde{q}_L^\star ilde{q}_L$

• In stop sector we have $m_{\tilde{t}_{RR}} = m_{\tilde{q}}$ as used for $\delta_{ij}^{t-\tilde{t}}$

• Adopt MFV in sfermion trilinears $A_f = y_f \cdot \tilde{A}, \text{ for } f = t, b, au$

• Consider light gaugino states of $\mathcal{O}(100~{\rm GeV})$ in cases where $h \to \nu_{\tau} \tilde{\chi}_{2}^{0}$ / $\tau^{\pm} \chi_{2}^{\mp}$

Input parameters

Range				
δ_ϵ	[0, 0.5]			
μ	[90, 1000]	$[\mathrm{GeV}]$		
M_1	[100, 2500]	$[\mathrm{GeV}]$		
M_2	[100, 2500]	$[\mathrm{GeV}]$		
$t_{oldsymbol{eta}}$	[2, 30]			
δ_B	[0, 0.5]			
m_A	[1000, 10000]	$[\mathrm{GeV}]$		
$m_{\tilde{ u}_{ au}}$	[200, 800]	$[\mathrm{GeV}]$		
$m_{ ilde{q}}$	[1000, 8000]	$[\mathrm{GeV}]$		
$ ilde{A}$	[0, 4000]	$[\mathrm{GeV}]$		
$m_{\tilde{b}_{RR}}$	[2000, 5000]	$[\mathrm{GeV}]$		
$m_{\tilde{ au}_{RR}}$	[1000, 5000]	[GeV]		

Neutrino mass - BRPV

• $(m_{\nu_{\tau}})_{loop}^{\delta_B\delta_B}$

Neutrino mass - BRPV

• $(m_{\nu_{\tau}})_{loop}^{\delta_B\delta_{\epsilon}}$

Neutrino mass - TRPV

•
$$(m_{\nu_{\tau}})_{loop}^{\lambda'_{3ii}\lambda'_{3ii}} \sim \frac{3}{8\pi^2} (\lambda'_{3ii})^2 \frac{m_{q_i}^2}{\bar{m}_{\tilde{q}_i}}$$
,

• Similarly for $(m_{\nu_k})_{loop}^{\lambda_{kii}\lambda_{kii}} \sim \frac{1}{8\pi^2} (\lambda_{kii})^2 \frac{m_{\ell_i}^2}{\bar{m}_{\tilde{\ell}_i}}$

• The largest effect arises from λ'_{333} since it is $\propto m_b$

Neutrino mass - TRPV

Additional 1-loop TRPV contribution:

ullet Can be discarded by virtue of $\,\delta_\epsilon o 0\,$

BRPV - Input parameters

	BM1A	BM1B	BM2	ВМЗ	
δ_ϵ	0.04	0.27	0.10	0.22	
μ	626.54	92.90	220.38	120.05	$[\mathrm{GeV}]$
M_1	523.19	2030.48	104.94	130.56	$[\mathrm{GeV}]$
M_2	103.83	1028.05	991.55	999.39	$[\mathrm{GeV}]$
t_{eta}	2.14	2.73	2.81	3.15	
δ_B	0.05	0.11	0.17	0.10	
m_A	4467.78	2558.96	2710.2	3162.6	$[\mathrm{GeV}]$
$m_{\tilde{ u}_{ au}}$	291.65	317.38	506.78	358.69	$[\mathrm{GeV}]$
$m_{ ilde{q}}$	6071.69	2860.5	4628.27	1094.07	$[\mathrm{GeV}]$
$ ilde{A}$	1537.44	2842.51	66.19	3180.91	$[\mathrm{GeV}]$
$m_{\tilde{b}_{RR}}$	4814.49	4996.39	4245.07	4721.63	$[\mathrm{GeV}]$
$m_{\tilde{ au}_{RR}}$	1509.25	1303.96	1122.68	2670.45	$[\mathrm{GeV}]$

BRPV - Input parameters

	${\tt BM}\mu$	${\tt BM}\tau$	
δ_ϵ	0.47	0.49	
μ	642.71	631.61	$[\mathrm{GeV}]$
M_1	1426.05	1651.6	$[\mathrm{GeV}]$
M_2	682.82	687.75	$[\mathrm{GeV}]$
t_{eta}	6.31	6.76	
δ_B	0.05	0.05	
m_A	8981.82	8530.08	$[\mathrm{GeV}]$
$m_{\tilde{ u}_l}$	543.82	535.47	$[\mathrm{GeV}]$
$m_{ ilde{q}}$	2210.72	2415.51	$[\mathrm{GeV}]$
$ ilde{A}$	520.38	247.83	$[\mathrm{GeV}]$
$m_{\tilde{b}_{RR}}$	4720.75	4594.09	$[\mathrm{GeV}]$
$m_{\tilde{l}_{RR}}$	4249.44	4145.23	$[\mathrm{GeV}]$

TRPV - Input parameters

	${\rm BM}\lambda_{333}'$	${\rm BM}\lambda_{311}'$	
δ_{ϵ}	0	0	
μ	202.46	556.34	$[\mathrm{GeV}]$
M_1	759.74	1747.98	$[\mathrm{GeV}]$
M_2	251.55	1589.49	$[\mathrm{GeV}]$
$t_{oldsymbol{eta}}$	2.77	16.59	
δ_B	0.11	0.45	
m_A	2150.46	1508.96	$[\mathrm{GeV}]$
$m_{\tilde{ u}_{ au}}$	768	723.75	$[\mathrm{GeV}]$
$m_{ ilde{q}}$	3461.04	2008.27	$[\mathrm{GeV}]$
$ ilde{A}$	953.94	2.89	$[\mathrm{GeV}]$
$m_{\tilde{b}_{RR}}$	2764.42	2421.53	$[\mathrm{GeV}]$
$m_{ ilde{ au}_{RR}}$	2357.42	3693.50	$[\mathrm{GeV}]$

TRPV - Input parameters

	${\rm BM}\lambda_{233}$	${\rm BM}\lambda_{322}$	
δ_{ϵ}	0	0	
μ	958.82	270.48	$[\mathrm{GeV}]$
M_1	593.21	290.19	$[\mathrm{GeV}]$
M_2	1355.12	1222.63	$[\mathrm{GeV}]$
$t_{oldsymbol{eta}}$	4.35	2.72	
δ_B	0.03	0.02	
m_A	2141.48	5007.63	$[\mathrm{GeV}]$
$m_{ ilde{ u}_l}$	218.16	718.52	$[\mathrm{GeV}]$
$m_{ ilde{q}}$	2591.04	2782.38	$[\mathrm{GeV}]$
$ ilde{A}$	95.18	1772.84	$[\mathrm{GeV}]$
$m_{\tilde{b}_{RR}}$	4703.45	2381.95	$[\mathrm{GeV}]$
$m_{\tilde{l}_{RR}}$	3133.34	2371.34	$[\mathrm{GeV}]$

$h \rightarrow \nu_{\tau} \tilde{\chi}_{2}^{0} / \tau^{\pm} \chi_{2}^{\mp}$ BRPV signatures

- Consider the subsequent gaugino decays: $\chi_2^+ \to \nu W^+, \ \tau^+ Z$ and $\tilde{\chi}_2^0 \to \tau^- W^+, \ \nu Z$
- We find $BR(\chi_2^+ \to \nu W^+)$, $BR(\tilde{\chi}_2^0 \to \tau^- W^+) \gtrsim 90\%$
- These gaugino 2-body BRPV decays are prompt, within the detector
- Taking into account the W-boson decays:

$$h \to \tau^{\pm} \chi_2^{\mp} \to \tau^{\pm} \ell^{\mp} + \not\!\!E_T$$
 , $h \to \nu_{\tau} \tilde{\chi}_2^0 \to \tau^{\pm} \ell^{\mp} + \not\!\!E_T$, $\ell = e, \mu, \tau$

Define the following decay signal:

$$\mu_{\tau\ell + \cancel{E}_T} \equiv \frac{\Gamma(h \to \tau^{\pm}\ell^{\mp} + \cancel{E}_T)}{\Gamma(h \to \tau^{\pm}\ell^{\mp} + \cancel{E}_T)_{SM}}$$

$$\Gamma(h \to \tau^{\pm}\ell^{\mp} + \not\!\!E_T)_{SM} = \Gamma(h \to WW^{\star} \to \tau^{\pm}\ell^{\mp} + \not\!\!E_T)_{SM} \sim 0.01 \text{ MeV}$$

$$\Gamma(h \to \tau^{\pm}\ell^{\mp} + \cancel{E}_T) = \Gamma(h \to WW^{\star} \to \tau^{\pm}\ell^{\mp} + \cancel{E}_T) + \Gamma(h \to \tau^{\pm}\chi_2^{\mp} \to \tau^{\pm}\ell^{\mp} + \cancel{E}_T) + \Gamma(h \to \tau^{\pm}\chi_2^{\mp} \to \tau^{\pm}\ell^{\mp} + \cancel{E}_T)$$

$$+ \Gamma(h \to \nu_{\tau}\tilde{\chi}_2^0 \to \tau^{\pm}\ell^{\mp} + \cancel{E}_T)$$

$h \rightarrow \nu_{\tau} \tilde{\chi}_{2}^{0} / \tau^{\pm} \chi_{2}^{\mp}$ BRPV signatures

In particular

$$\Gamma(h \to WW^{\star} \to \tau^{\pm}\ell^{\mp} + \cancel{E}_{T}) = (g_{hVV}^{RPC})^{2} \Gamma(h \to WW^{\star} \to \tau^{\pm}\ell^{\mp} + \cancel{E}_{T})_{SM}$$

such that

$$\mu_{\tau\ell+\cancel{E_T}} = \left(g_{hVV}^{RPC}\right)^2 + \frac{\Gamma(h \to \tau^{\pm}\chi_2^{\mp} \to \tau^{\pm}\ell^{\mp} + \cancel{E_T}) + \Gamma(h \to \nu_{\tau}\tilde{\chi}_2^0 \to \tau^{\pm}\ell^{\mp} + \cancel{E_T})}{\Gamma(h \to WW^{\star} \to \tau^{\pm}\ell^{\mp} + \cancel{E_T})_{SM}}$$

• Note that in these benchmark models: $\left[\mu_{FWW}^{(gg)} \sim \left(g_{hVV}^{RPC}\right)^2 \sim 0.92\right]$

$$\mu_{FWW}^{(gg)} \sim (g_{hVV}^{RPC})^2 \sim 0.92$$

$$\Gamma(h \to \tau^{\pm} \chi_2^{\mp}) + \Gamma(h \to \nu_{\tau} \tilde{\chi}_2^0) \sim 0.3, 0.15, 0.2, 0.6 \text{ MeV}$$

Thus

$$\Gamma(h \to \tau^{\pm} \chi_{2}^{\mp} \to \tau^{\pm} \ell^{\mp} + \not\!\!{E}_{T}) + \Gamma(h \to \nu_{\tau} \tilde{\chi}_{2}^{0} \to \tau^{\pm} \ell^{\mp} + \not\!\!{E}_{T}) \sim 0.015 - 0.06 \text{ MeV}$$

$$\mu_{\tau\ell+E_T} \equiv \frac{\Gamma(h \to \tau^{\pm}\ell^{\mp} + E_T)}{\Gamma(h \to \tau^{\pm}\ell^{\mp} + E_T)_{SM}} \sim 2.5 - 7$$

TRPV effects with $\delta_{\epsilon} \neq 0$

• Sbottom mixing altered by new F-term $\propto v\mu s_{\beta}\cdot(\delta_{\epsilon}\cdot\lambda_{333}')$ affecting sbottom exchange @ 1-loop in $ggh \& \gamma\gamma h$ couplings as well as the predicted Higgs mass:

$$(\Delta m_h^2)_{\tilde{f}} \approx -\frac{N_c^{\tilde{f}}}{\sqrt{2}G_F} \frac{y_f}{96\pi^2} \frac{\mu^4}{m_{\tilde{f}}^2}$$

Additional 1-loop TRPV contribution to neutrino mass

TRPV effects with $\lambda'_{311} \neq 0$

• TRPV effect is manifest by enhanced Higgs production via $d\overline{d}$ -fusion

$$\frac{\sigma(d\bar{d} \to h)}{\sigma(gg \to h)_{SM}} \simeq \frac{\left(\kappa_d^{TRPV}\right)^2 \cdot \sigma(d\bar{d} \to h)_{\kappa_d^{TRPV} = 1} \cdot K_d}{\sigma(gg \to h)_{SM}^{N3LO}} \simeq 0.73 \left(\kappa_d^{TRPV}\right)^2$$

• In BM λ'_{311} we find $\kappa_d^{TRPV} \sim 1.34$ $\mu_F^{(gg+dd)} \simeq 2.3$

TRPV effects with $\lambda'_{311} \neq 0$

• ${
m BM}\lambda'_{311}$: enhanced coupling to d-quarks also contributes to hV production via a t-channel d-quark exchange diagram $d\bar d \to hV$

$$\begin{split} \mu_V^{(hV+dd)} &\equiv \frac{\sigma(q\bar{q} \to V \to hV) + \sigma(d\bar{d} \to hV)}{\sigma(q\bar{q} \to V \to hV)_{SM}} = \mu_V^{(hV)} + \frac{\sigma(d\bar{d} \to hV)}{\sigma(q\bar{q} \to V \to hV)_{SM}} \;, \\ \mu_V^{(hV)} &= \left(g_{hVV}^{RPC}\right)^2 \\ \sigma(d\bar{d} \to hV) &= \left(\kappa_d^{TRPV}\right)^2 \cdot \sigma(d\bar{d} \to hV)_{\kappa_d^{TRPV} = 1} \;, \\ \frac{\sigma(d\bar{d} \to hV)_{\kappa_d^{TRPV} = 1}}{\sigma(q\bar{q} \to V \to hV)_{SM}} \sim 0.05 \quad \Box \quad \mu_V^{(hV+dd)} \simeq \left(g_{hVV}^{RPC}\right)^2 + 0.05 \cdot (\kappa_d^{TRPV})^2 \\ \mu_{Vbb}^{(hV)} &\to \mu_{Vbb}^{(hV+dd)} \end{split}$$

TRPV with $\lambda_{322} \in [0, 0.7]$

- Consider $h \to \mu^+\mu^-$ with fixed $m_A=2~{\rm TeV}$ and $t_{\beta}=2$ $t_{\beta}=30$.
- Define "distance" from RPC:

$$\Delta \mu_{F\mu\mu} \equiv \frac{|\mu_{F\mu\mu}^{TRPV} - \mu_{F\mu\mu}^{RPC}|}{\mu_{F\mu\mu}^{RPC}}$$

where
$$\mu_{F\mu\mu}^{TRPV} \equiv \mu_{F\mu\mu}^{(gg)}(\lambda_{322}, \delta_B)$$
 and $\mu_{F\mu\mu}^{RPC} = \mu_{F\mu\mu}^{(gg)}(\lambda_{322} = 0, \delta_B = 0)$

- Set $\delta_{\epsilon} = 0$ and apply $\Delta \mu_{F\mu\mu} > 0.5, 0.8, 0.95$
- Recall $\mu_{F\mu\mu}^{RPC} \simeq \mu_{F\mu\mu}^{SM} \simeq 1$ at decoupling

TRPV with $\lambda_{322} \in [0, 0.7]$

- $BM\lambda_{322}$ not unique
- Sizable RPV effect also with $\lambda_{322} \sim \mathcal{O}(0.1)$

Higgs coupling to Vector bosons

Coupling:

$$\Lambda_{hVV} = g_V^{SM} g_{hVV}^{RPC} ,$$

$$g_Z^{SM} = \frac{1}{2}v(g_1s_W + g_2c_W)^2, \ g_W^{SM} = \frac{1}{2}vg_2^2, \ g_{hVV}^{RPC} = c_\beta Z_{h1} + s_\beta Z_{h2}$$

Decay:

$$\Gamma(h \to VV^{\star}) = \left(g_{hVV}^{RPC}\right)^2 \Gamma_{SM} \left(h \to VV^{\star}\right)$$

Production:

$$\sigma\left(q\bar{q} \to V \to hV\right) = \left(g_{hVV}^{RPC}\right)^2 \sigma_{SM} \left(q\bar{q} \to V \to hV\right) ,$$

$$\sigma\left(qq \to hqq\right) = \left(g_{hVV}^{RPC}\right)^2 \sigma_{SM} \left(qq \to hqq\right) .$$
52

Higgs coupling to quarks/RPC leptons

• quarks:

$$\Lambda_{hq\overline{q}} = g_q^{SM} g_{hq\overline{q}}^{RPC}$$
, $g_q^{SM} = \frac{m_q}{v}$ and $g_{hu\overline{u}}^{RPC} = \frac{Z_{h2}}{s_\beta}$, $g_{hd\overline{d}}^{RPC} = \frac{Z_{h1}}{c_\beta}$

- RPC leptons: $\Lambda_{hll} = g_l^{SM} g_{hll}^{RPC}$, $g_l^{SM} = \frac{m_l}{v}$ and $g_{hll}^{RPC} = \frac{Z_{h1}}{c_{\beta}}$.
- Decay:

$$\Gamma(h \to q\bar{q}) = \left(g_{hq\bar{q}}^{RPC}\right)^2 \Gamma_{SM}(h \to q\bar{q})$$

For RPC leptons:

Higgs coupling to squarks and sleptons

• sbottom:

$$\Lambda_{h\tilde{b_i}\tilde{b}_j} = \frac{g_2}{m_W} g_{h\tilde{b_i}\tilde{b}_j}^{RPC}$$

(In TRPV can have F-term $\propto y_b \lambda_{333}^{'} Z_{h3}$ indirectly affecting hgg and $h\gamma\gamma$)

• Stop: $\Lambda_{h\tilde{t_i}\tilde{t_j}} = \frac{g_2}{m_W} \left(g_{h\tilde{t_i}\tilde{t_j}}^{RPC} - \frac{m_t}{s_\beta} Z_{i1}^U Z_{j2}^U \mu \delta_\epsilon Z_{h3} \right)$

 $\delta_{\epsilon} imes \delta_{B}$ effect in gluon-fusion & diphoton

• Sleptons:

$$\Lambda_{h\tilde{\tau}_{i}\tilde{\tau}_{i}} = \frac{g_{2}}{m_{W}} \left[g_{h\tilde{\tau}_{i}\tilde{\tau}_{i}}^{RPC} - v^{2}c_{\beta} \frac{g_{2}^{2}}{4} Z_{i1}^{+} Z_{i3}^{+} Z_{h3} + \frac{m_{\tau}}{c_{\beta}} A_{\tau} Z_{i1}^{+} Z_{i4}^{+} Z_{h3} + \frac{m_{\tau}^{2}}{c_{\beta}} Z_{i1}^{+} Z_{i3}^{+} Z_{h3} + \frac{m_{\tau}^{2}}{c_{\beta}} Z_{i1}^{+} Z_{i4}^{+} Z_{h2} - v^{2}s_{\beta} \frac{g_{2}^{2}}{4} Z_{h3} Z_{i3}^{+} Z_{i2}^{+} + \mu \frac{m_{\tau}}{c_{\beta}} Z_{i4}^{+} Z_{h3} Z_{i2}^{+} + \delta_{\epsilon} \mu \frac{m_{\tau}}{c_{\beta}} Z_{i4}^{+} Z_{h1} Z_{i2}^{+} \right]$$
54

Higgs coupling to gauginos

Couplings:

$$\Lambda_{h\tilde{\chi}_i^0\tilde{\chi}_j^0/h\chi_i^+\chi_j^-} = \Lambda_{Lij}^{N/C} L + \Lambda_{Rij}^{N/C} R ,$$

Decays:

$$\Gamma\left(h \to \tilde{\chi}_{i}^{0} \tilde{\chi}_{j}^{0} / \chi_{i}^{+} \chi_{j}^{-}\right) = \left[\left(\left|\Lambda_{Lij}^{N/C}\right|^{2} + \left|\Lambda_{Rij}^{N/C}\right|^{2}\right) \left(m_{h}^{2} - m_{\tilde{\chi}_{i}^{0} / \chi_{i}^{+}}^{2} - m_{\tilde{\chi}_{j}^{0} / \chi_{j}^{+}}^{2}\right)\right] \\ - 4\operatorname{Re}\left\{\Lambda_{Lij}^{N/C} \Lambda_{Rij}^{N/C}\right\} m_{\tilde{\chi}_{i}^{0} / \chi_{i}^{+}} m_{\tilde{\chi}_{j}^{0} / \chi_{j}^{+}}\right] \times \frac{\lambda^{\frac{1}{2}} \left(m_{h}^{2}, m_{\tilde{\chi}_{i}^{0} / \chi_{i}^{+}}^{2}, m_{\tilde{\chi}_{j}^{0} / \chi_{j}^{+}}^{2}\right)}{16\pi m_{h}^{3}}$$

1-loop diphoton decay

• SM:

$$\Gamma_{SM} (h \to \gamma \gamma) = \frac{G_F \alpha^2 m_h^3}{128\sqrt{2}\pi^3} \left| \sum_f N_C Q_f^2 A_{\frac{1}{2}} (\tau_f) + A_1 (\tau_W) \right|^2$$

• BRPV:
$$\begin{split} &\Gamma\left(h \to \gamma\gamma\right) = \\ &\frac{G_{F}\alpha^{2}m_{h}^{3}}{128\sqrt{2}\pi^{3}} \times \left| \sum_{q=t,b} N_{C}Q_{f}^{2}g_{hq\overline{q}}^{RPC}A_{\frac{1}{2}}\left(\tau_{q}\right) + g_{hVV}^{RPC}A_{1}\left(\tau_{W}\right) \right. \\ &+ \sum_{i=1}^{3} \frac{2m_{W}}{m_{\chi_{i}^{\pm}}^{4}} \frac{\Lambda_{ii}^{C}}{e}A_{\frac{1}{2}}\left(\tau_{\chi_{i}^{\pm}}\right) \\ &+ \frac{v}{2} \sum_{i=1}^{2} \left[\frac{\Lambda_{h\tilde{b}_{i}\tilde{b}_{i}}}{m_{\tilde{b}_{i}}^{2}} N_{C}Q_{\tilde{b}}^{2}A_{0}\left(\tau_{\tilde{b}_{i}}\right) + \frac{\Lambda_{h\tilde{t}_{i}\tilde{t}_{i}}}{m_{\tilde{t}_{i}}^{2}} N_{C}Q_{\tilde{t}}^{2}A_{0}\left(\tau_{\tilde{t}_{i}}\right) \right] \\ &+ \frac{v}{2} \sum_{i=2}^{4} \frac{\Lambda_{h\tilde{\tau}_{i}\tilde{\tau}_{i}}}{m_{\tilde{\tau}_{i}}^{2}} A_{0}\left(\tau_{\tilde{\tau}_{i}}\right) \right|^{2} \end{split}$$

1-loop Higgs decay to gluons

• SM:

$$\Gamma_{SM} (h \to gg) = K_{SM}^{QCD} \frac{G_F \alpha_s^2 m_h^3}{36\sqrt{2}\pi^3} \left| \frac{3}{4} \sum_{q=t,b} A_{\frac{1}{2}} (\tau_q) \right|^2$$

• BRPV:
$$\Gamma\left(h \to gg\right) = K^{QCD} \frac{G_F \alpha_s^2 m_h^3}{36\sqrt{2}\pi^3} \times \left| \frac{3}{4} \sum_{q=t,b} g_{hq\bar{q}}^{RPC} A_{\frac{1}{2}} \left(\tau_q\right) \right. \\ \left. + \frac{3v}{8} \sum_{i=1}^2 \left[\frac{\Lambda_{h\tilde{b}_i\tilde{b}_i}}{m_{\tilde{b}_i}^2} A_0 \left(\tau_{\tilde{b}_i}\right) + \frac{\Lambda_{h\tilde{t}_i\tilde{t}_i}}{m_{\tilde{t}_i}^2} A_0 \left(\tau_{\tilde{t}_i}\right) \right] \right|^2$$

BRPV SUSY Spectrum

	BM1A	BM1B	BM2	ВМЗ
$(\tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_5^0)$	(94.2, 510.4, 628.3, 650.7)	(90.1, 97.6, 1034.6, 2031.4)	(93.5, 223.7, 227.6, 999.2)	(86.0, 125.9, 163.6, 1006.2)
$(\chi_2^{\pm},\chi_3^{\pm})$	(94.3, 638.7)	(91.9, 1034.6)	(215.9, 999.2)	(118.6, 1006.3)
$(\tilde{ u}_{ au}^E, H)$	(200.2, 4473.6)	(162.8, 2574.3)	(229.8, 2748.4)	(163.2, 3179.2)
$(\tilde{\nu}_{ au}^{O},A)$	(200.1, 4472.8)	(162.4, 2573.4)	(229.5, 2747.6)	(163.0, 3178.7)
$(ilde{ au}_2, ilde{ au}_3, ilde{ au}_4)$	(210.2, 1509.2, 4473.5)	(176.8, 1303.9, 2574.6)	(240.1, 1122.6, 2748.7)	(178.3, 2670.4, 3179.7)
$(ilde{t}_1, ilde{t}_2)$	(6056.3, 6091.8)	(2779.5, 2949.3)	(4631.2, 4631.7)	(826.2, 1330.9)
$(\tilde{b}_1, \tilde{b}_2)$	(4814.4, 6071.6)	(2860.5, 4996.4)	(4245.0, 4628.2)	(1094.0, 4721.6)

BRPV SUSY Spectrum

	$\mathtt{BM}\mu$	${\tt BM}\tau$
$(\tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_5^0)$	(632.2, 713.1, 761.7, 1428.1)	(633.1, 707.0, 760.1, 1653.1)
$(\chi_2^{\pm},\chi_3^{\pm})$	(633.2, 764.0)	(634.1, 762.0)
$(\tilde{\nu}^E_l, H)$	(181.3, 8996.4)	(174.8, 8545.1)
$(\tilde{\nu}_l^O, A)$	(181.3, 8996.4)	(174.8, 8545.0)
$(ilde{l}_2, ilde{l}_3, ilde{l}_4)$	(197.4, 4249.4, 8996.7)	(191.5, 4145.2, 8545.4)
$(ilde{t}_1, ilde{t}_2)$	(2201.0, 2233.7)	(2416.1, 2427.2)
$(\tilde{b}_1, \tilde{b}_2)$	(2210.7, 4720.7)	(2415.5, 4594.0)

TRPV SUSY Spectrum

	${\rm BM}\lambda_{333}'$	${\tt BM}\lambda_{311}'$
$(\tilde{\chi}^0_2, \tilde{\chi}^0_3, \tilde{\chi}^0_4, \tilde{\chi}^0_5)$	(150.2, 205.4, 303.5, 762.9)	(552.0, 558.0, 1594.1, 1749.2)
$(\chi_2^{\pm},\chi_3^{\pm})$	(153.1, 305.9)	(554.2, 1594.2)
$(\tilde{ u}_{ au}^E, H)$	(725.7, 2166.1)	(203.2, 1661.2)
$(\tilde{\nu}_{ au}^{O},A)$	(725.7, 2165.0)	(203.1, 1661.1)
$(ilde{ au}_2, ilde{ au}_3, ilde{ au}_4)$	(729.1, 2166.5, 2357.4)	(218.2, 1663.0, 3693.5)
$(ilde{t}_1, ilde{t}_2)$	(3443.2, 3487.3)	(2014.4, 2017.0)
$(\tilde{b}_1, \tilde{b}_2)$	(2764.4, 3461.0)	(2008.1, 2421.6)

TRPV SUSY Spectrum

	${\tt BM}\lambda_{233}$	${\tt BM}\lambda_{322}$
$(\chi_2^0,\chi_3^0,\chi_4^0,\chi_5^0)$	(589.7, 951.3, 959.9, 1367.1)	(236.3, 271.8, 319.4, 1228.8)
$(\chi_2^{\pm},\chi_3^{\pm})$	(948.3, 1367.1)	(265.7, 1228.8)
$(\tilde{\nu}^E_l, H)$	(207.5, 2143.0)	(709.3, 5009.4)
$(\tilde{\nu}_l^O, A)$	(207.5, 2142.5)	(709.3, 5008.9)
$(\tilde{l}_2, \tilde{l}_3, \tilde{l}_4)$	(220.9, 2144.0, 3133.3)	(712.7, 2371.3, 5009.5)
$(ilde{t}_1, ilde{t}_2)$	(2592.6, 2600.9)	(2735.2, 2839.2)
$(\tilde{b}_1, \tilde{b}_2)$	(2591.0, 4703.4)	(2381.9, 2782.3)