

Future prospects for Higgs physics at the LHC and beyond

Mario Pelliccioni

INFN Torino

DPF 2019 – Boston

A results explosion!

In last year, big push to update prospects for high luminosity physics program at LHC A large part of these projections relate to Higgs physics

Intense collaboration between ATLAS and CMS to create coherent picture

For CMS, public results can be found here

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/FTR/index.html

FTR-18-011 couplings, width, differential cross section

FTR-18-016 H → invisible

FTR-18-017 H $\rightarrow \tau \tau$ in MSSM

FTR-18-019 Double Higgs production

FTR-18-020 ttH, $H \rightarrow \gamma \gamma$ and self-coupling constraints

FTR-18-035 Exotic decays

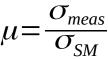
FTR-18-040 H \rightarrow ZZ at high mass

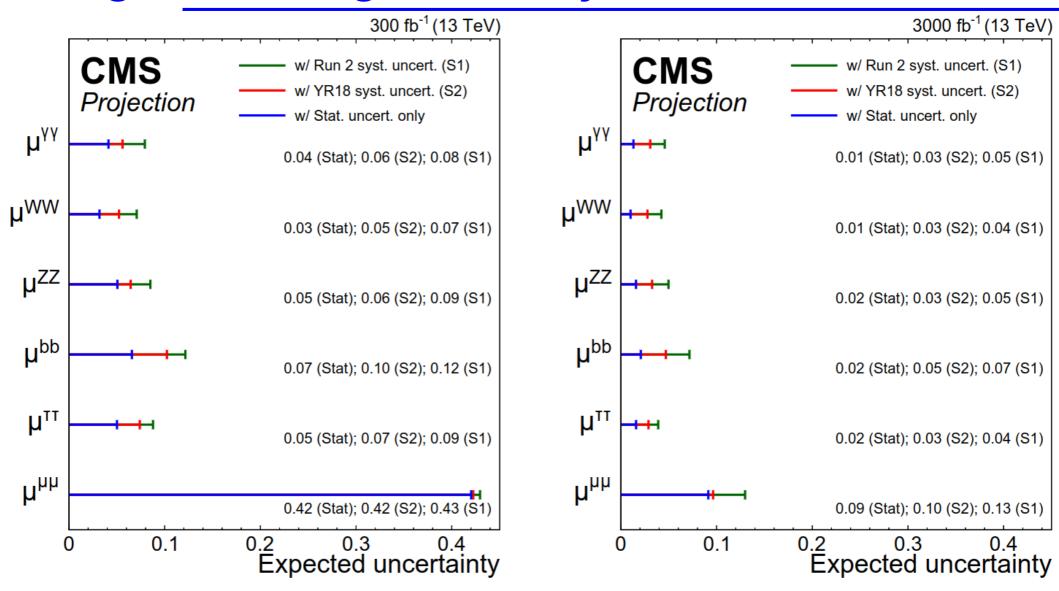
This talks uses many results from these documents

Systematic uncertainties

This is the crucial aspect of these projections

CMS mostly considering two scenarios:


- S1: "Run-2" systematics
 - Independent on integrated luminosity
 - CMS performance unchanged
- S2: "YR18" systematics
 - Theory scaled by ½
 - Experimental scaled by 1/sqrt(L)
 - With a cut-off to a reasonable expected limit on uncertainty with CMS upgrades


A pinch of pessimism: 13 TeV (but not much different for h₁₂₅)

Limits to systematics at high lumi

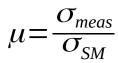
Source	Component	Run 2 uncertainty	Projection minimum uncertainty
Muon ID		1–2%	0.5%
Electron ID		1–2%	0.5%
Photon ID		0.5–2%	0.25–1%
Hadronic tau ID		6%	2.5%
Jet energy scale	Absolute	0.5%	0.1-0.2%
	Relative	0.1–3%	0.1-0.5%
	Pileup	0–2%	Same as Run 2
	Method and sample	0.5–5%	No limit
	Jet flavour	1.5%	0.75%
	Time stability	0.2%	No limit
Jet energy res.		Varies with $p_{\rm T}$ and η	Half of Run 2
MET scale		Varies with analysis selection	Half of Run 2
b-Tagging	b-/c-jets (syst.)	Varies with $p_{\rm T}$ and η	Same as Run 2
	light mis-tag (syst.)	Varies with p_{T} and η	Same as Run 2
	b-/c-jets (stat.)	Varies with p_{T} and η	No limit
	light mis-tag (stat.)	Varies with $p_{\rm T}$ and η	No limit
Integrated lumi.		2.5%	1%

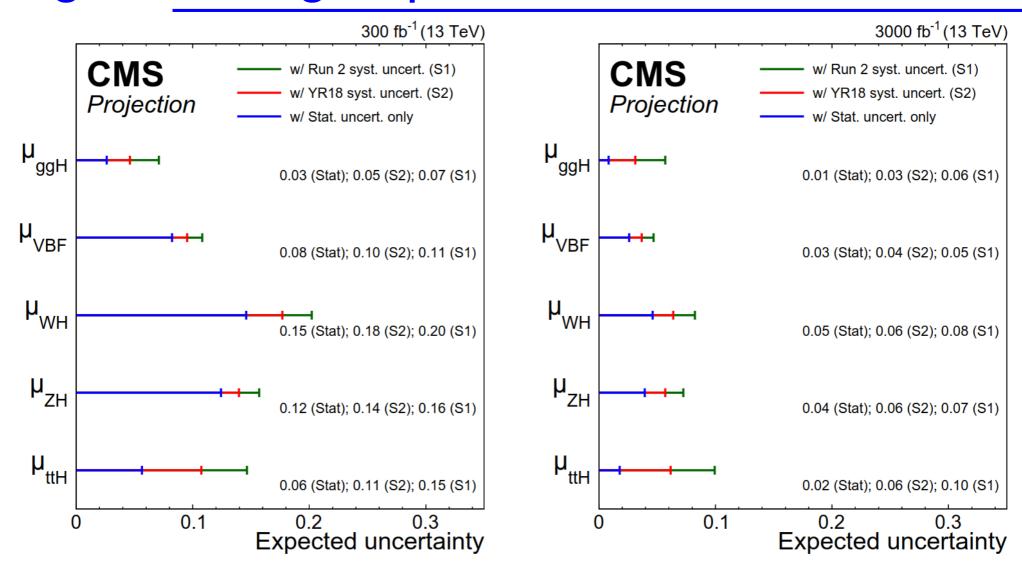
Signal strength: decay modes

With 3 ab⁻¹, systematics are the limiting factor for *most* of the final states

Not really a surprise, but...

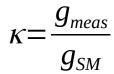
Systematics: theory vs experiment


			300 fb	⁻¹ uncerta	ainty [%]		$3000 \text{ fb}^{-1} \text{ uncertainty } [\%]$						
		Total	Stat	SigTh	BkgTh	Exp	Total	Stat	SigTh	BkgTh	Exp		
$\mu^{\gamma\gamma}$	S1	7.9	4.1	4.8	0.3	4.8	4.6	1.3	3.5	0.3	2.6		
μ	S2	5.6	4.1	2.7	0.3	2.6	3.1	1.3	2.1	0.3	1.7		
$\mu^{ m WW}$	S1	7.1	3.2	4.9	1.8	3.5	4.2	1.0	3.7	1.0	1.4		
μ	S2	5.2	3.2	2.7	1.4	2.8	2.8	1.0	2.2	0.9	1.1		
μ^{ZZ}	S1	8.5	5.1	5.1	0.4	4.5	5.0	1.6	3.5	1.9	2.5		
μ	S2	6.4	5.1	2.9	0.3	2.7	3.3	1.6	2.1	0.7	1.7		
$\mu^{ m bb}$	S1	12.2	6.6	4.8	7.0	5.6	7.2	2.1	5.4	3.6	2.3		
μ	S2	10.2	6.6	2.4	5.6	4.9	4.7	2.1	2.5	2.9	1.7		
$\mu^{ au au}$	S1	8.8	5.0	5.1	0.9	5.0	3.9	1.6	2.6	1.5	1.9		
μ	S2	7.4	5.0	3.3	0.9	4.3	2.9	1.6	1.8	0.6	1.4		
$u^{\mu\mu}$	S1	43.0	42.0	5.7	0.8	5.9	13.0	9.1	5.2	0.8	7.6		
μ' '	S2	42.2	42.0	3.0	0.8	2.6	9.6	9.1	2.6	0.8	1.7		

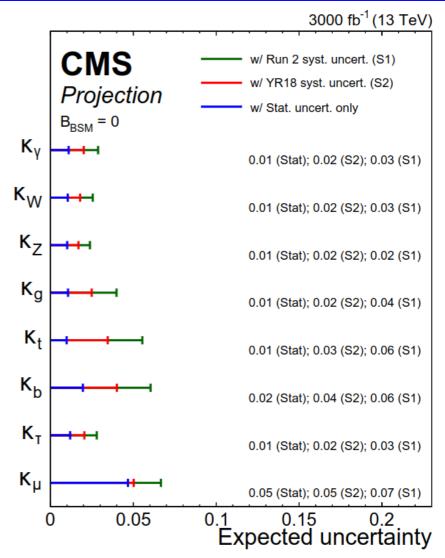

Systematics: theory vs experiment

			300 fb	⁻¹ uncerta	ainty [%]	$3000 \text{ fb}^{-1} \text{ uncertainty [\%]}$						
		Total	Stat	SigTh	BkgTh	Exp	Total	Stat	SigTh	BkgTh	Exp	
$\mu^{\gamma\gamma}$	S1	7.9	4.1	4.8	0.3	4.8	4.6	1.3	3.5	0.3	2.6	
μ··	S2	5.6	4.1	2.7	0.3	2.6	3.1	1.3	2.1	0.3	1.7	
$\mu^{ m WW}$	S1	7.1	3.2	4.9	1.8	3.5	4.2	1.0	3.7	1.0	1.4	
μ	S2	5.2	3.2	2.7	1.4	2.8	2.8	1.0	2.2	0.9	1.1	
μ^{ZZ}	S1	8.5	5.1	5.1	0.4	4.5	5.0	1.6	3.5	1.9	2.5	
μ	S2	6.4	5.1	2.9	0.3	2.7	3.3	1.6	2.1	0.7	1.7	
$\mu^{ m bb}$	S1	12.2	6.6	4.8	7.0	5.6	7.2	2.1	5.4	3.6	2.3	
μ	S2	10.2	6.6	2.4	5.6	4.9	4.7	2.1	2.5	2.9	1.7	
$\mu^{ au au}$	S1	8.8	5.0	5.1	0.9	5.0	3.9	1.6	2.6	1.5	1.9	
$\mu^{\circ \circ}$	S2	7.4	5.0	3.3	0.9	4.3	2.9	1.6	1.8	0.6	1.4	
$\mu^{\mu\mu}$	S1	43.0	42.0	5.7	0.8	5.9	13.0	9.1	5.2	0.8	7.6	
μ^{rr}	S2	42.2	42.0	3.0	0.8	2.6	9.6	9.1	2.6	0.8	1.7	

Target of few % uncertainty at end of LHC seems feasible in S2 Theory uncertainties become dominant at high lumi (apart from $\mu\mu$) Beware: high correlations arise at 3 ab⁻¹

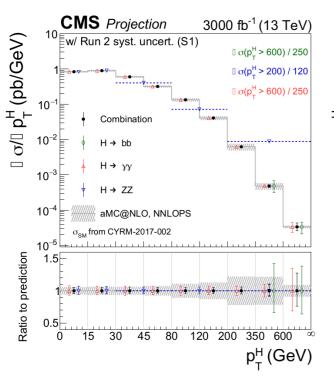

Signal strength: production channels

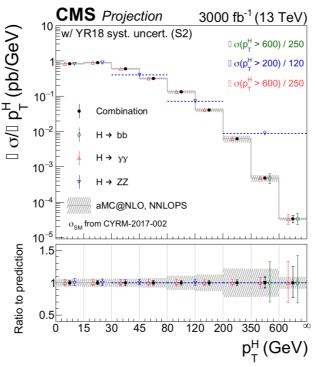




At 3 ab⁻¹, still statistically limited in all but ggH and ttH This information on signal strength can be further processed...

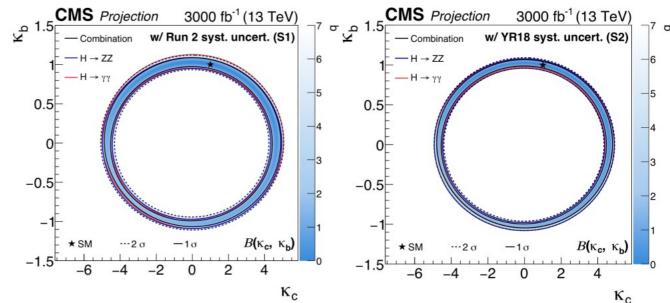
Higgs coupling modifiers





All coupling uncertainties with a few % at 3 ab⁻¹
Muon coupling < 10% in both scenarios
"Signal theory" generally the largest uncertainty at 3 ab⁻¹
Caveat: larger correlations wrt signal strength
Reminder: quark/lepton couplings within 2nd/3rd families crucial for NP searches...

Differential cross sections



Main conclusions:

- At 3 ab⁻¹ uncertainties reduced by factor 10 wrt now
- Higher p_T bins still statistically
 Dominated
- Lower $p_{\scriptscriptstyle T}$ bins theory limited

Can use the p_{T} distribution to Constrain couplings: (b,c) or (g,t)

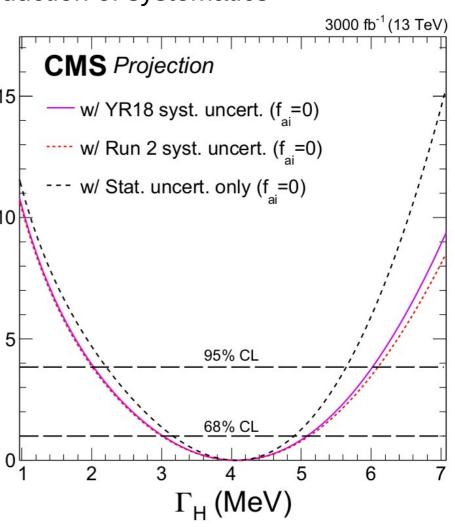
Additional information that can be used in a global fit

Higgs width

Remind: direct measurement "impossible" at LHC

Workaround: measure the ration between on-shell and off-shell cross sections

 \rightarrow Only one depends on Γ_H , and great reduction of systematics


CMS in H→VV

→ Current limit is 9 MeV @ 95% CL

Still statistically limited

Caveat: assumptions...

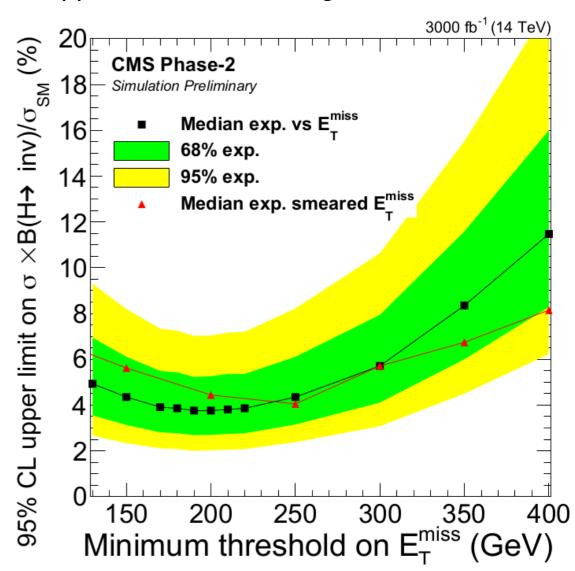
One can also put limits on anomalous couplings

H → invisible

Projections to 3 ab-1 show search limited by systematic uncertainties

Not the biggest surprise: tough analysis in pp environment, with great

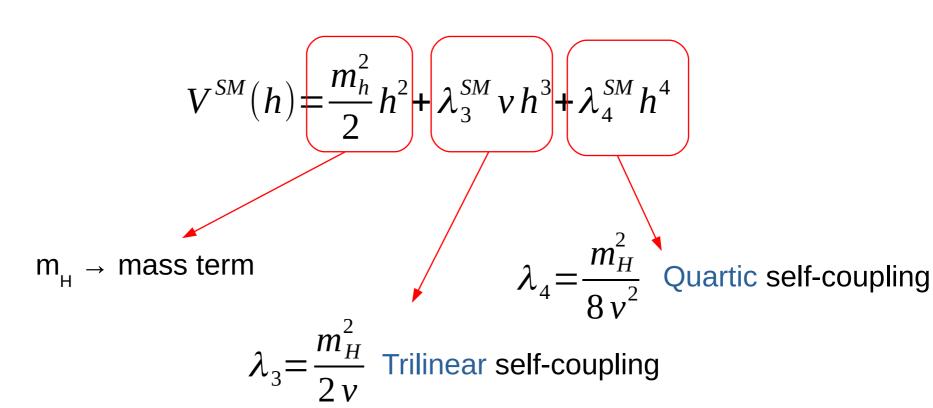
experimental challenges


Interesting exercise:

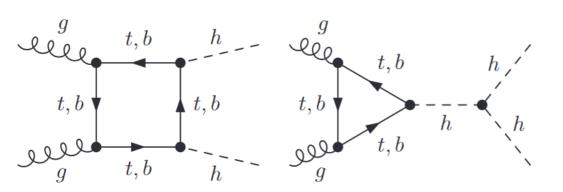
Test scenario with missing mass resolution worse by factor 2

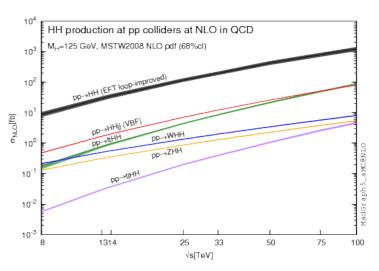
Case of extreme PU conditions

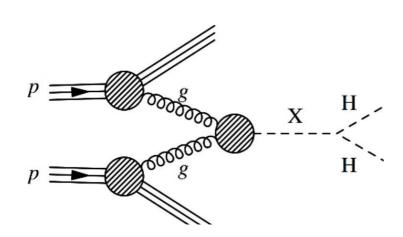
Conclusion:


Analysis is flexible enough to yield similar limits with selection re-optimization

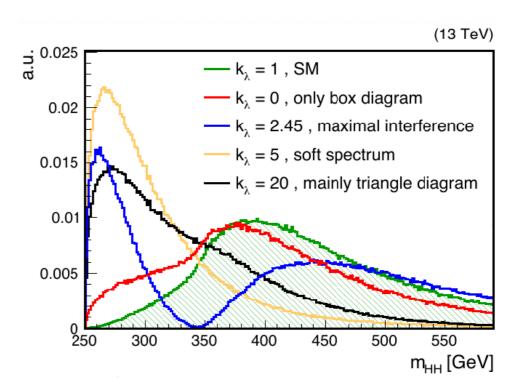
Di-Higgs production

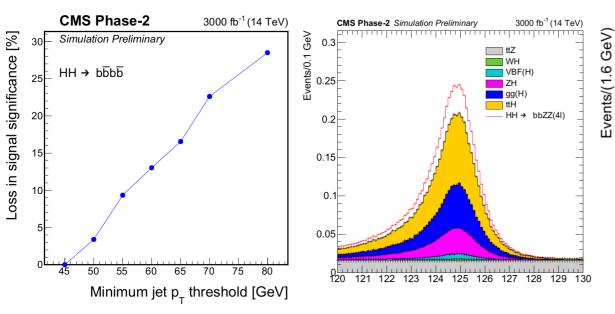

H-H production naturally emerges from the Standard Model


Potential near minimum:

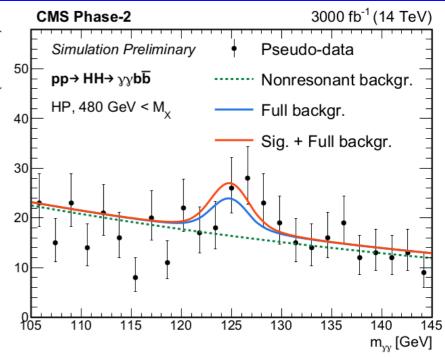

H-H production at LHC

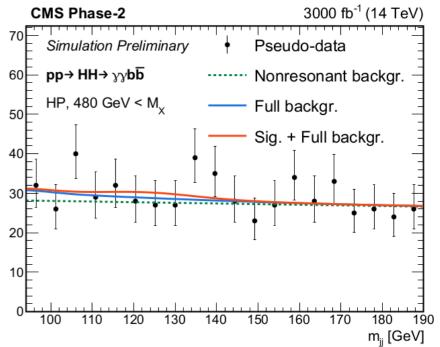
In SM, typically non-resonant



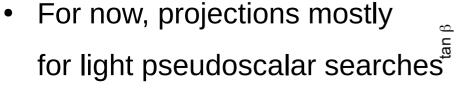

Nature doesn't help: destructive interference

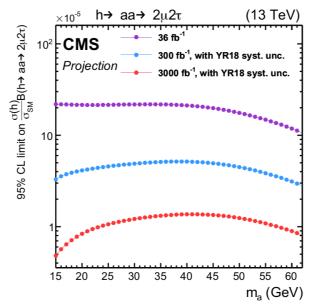
NP can be resonant or non-resonant (expansion on higher dim operators)

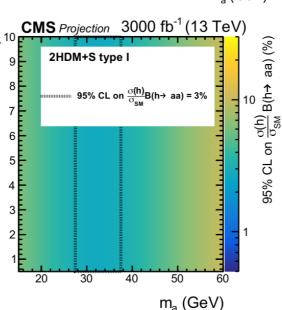


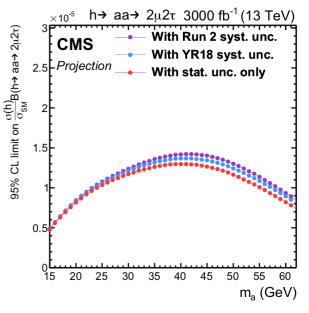

A plethora of final states

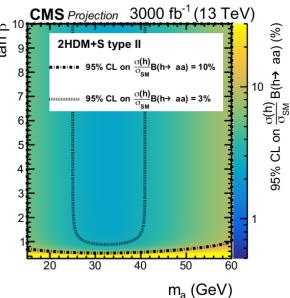
Channel	Signifi	cance	95% CL limit on $\sigma_{\rm HH}/\sigma_{\rm HH}^{\rm SM}$				
Charmer	Stat. + syst.	Stat. only	Stat. + syst.	Stat. only	_		
bbbb	0.95	1.2	2.1	1.6	<u> </u>		
bb au au	1.4	1.6	1.4	1.3	3 Ge		
$bbWW(\ell \nu \ell \nu)$	0.56	0.59	3.5	3.3	≣vents/(4.8		
$bb\gamma\gamma$	1.8	1.8	1.1	1.1	ents		
$bbZZ(\ell\ell\ell\ell)$	0.37	0.37	6.6	6.5	Eve		
Combination	2.6	2.8	0.77	0.71			


Combination shows LHC won't provide a complete picture on di-Higgs physics




Exotic decays


- Lots of possible decays to be studied at HL-LHC
 - H → meson + γ
 - H → quarkonium
 - H → aa
 - H → hh, Zh, Ah
 - LFV



 Some analyses need to be re-thought for HL environment

Higgs at future colliders

Studies emerging to provide more complete view on Higgs perspectives in future colliders

Fundamental step into decision making process for next generation accelerators

Many scenarios, difficult to summarize all considerations

Expected relative precision

kappa-0	HL-LHC	LHeC	HE-LHC	ILC ₂₅₀	ILC ₅₀₀	CLIC ₃₈₀	CLIC ₁₅₀₀	CLIC ₃₀₀₀	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh
κ_W (%)	1.9	0.75	1.0	1.8	0.29	0.86	0.17	0.11	1.3	1.3	0.43	0.15
$\kappa_{Z}\left(\%\right)$	1.6	1.2	0.95	0.29	0.23	0.5	0.26	0.23	0.13	0.2	0.17	0.12
$\kappa_{g}~(\%)$	2.4	3.6	1.5	2.3	0.97	2.5	1.3	0.9	1.5	1.7	1.0	0.52
$\kappa_{\gamma}\left(\% ight)$	1.9	7.5	1.2	6.7	3.4	98∗	5.0	2.2	3.7	4.7	3.9	0.35
$\kappa_{Z\gamma}$ (%)	10.6	_	4.0	99∗	86∗	120∗	15	6.9	8.2	81∗	75 ★	0.7
$\kappa_{c}\left(\% ight)$	_	4.0	_	2.5	1.3	4.3	1.8	1.4	2.2	1.8	1.3	0.95
κ_t (%)	2.8	_	2.1	_	6.9	_	_	2.6	_	_	_	1.0
κ_b (%)	3.5	2.1	2.3	1.8	0.58	1.9	0.48	0.38	1.2	1.3	0.67	0.45
κ_{μ} (%)	4.6	_	1.9	15	9.4	320∗	13	5.8	8.9	10	8.9	0.42
$\kappa_{ au}\left(\% ight)$	1.8	3.3	1.3	1.9	0.7	3.0	1.3	0.89	1.3	1.4	0.73	0.49

collider	(1) di-H excl.
HL-LHC	$^{+60}_{-50}\%$ (50%)
HE-LHC	10-20% (n.a.)
ILC ₂₅₀	_
ILC350	-
ILC ₅₀₀	27% (27%)
CLIC ₃₈₀	-
CLIC ₁₅₀₀	36% (36%)
CLIC ₃₀₀₀	$^{+11}_{-7}\%$ (n.a.)
FCC-ee ₂₄₀	_
FCC-ee ₃₆₅	-
FCC-ee/eh/hh	5% (5%)
CEPC	_

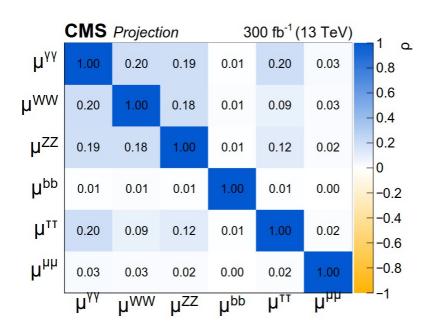
Upper bounds from rarer decays

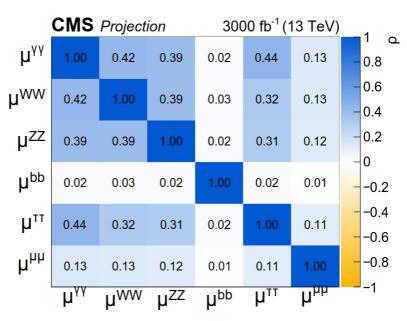
	HL-LHC	+LHeC	+HE-LHC	+ILC ₅₀₀	+CLIC ₃₀₀₀	+CEPC	+FCC-ee ₂₄₀	+FCC-ee/eh/hh
κ_u	570.	320.	420.	330.	430.	290.	310.	280.
κ_d	270.	150.	200.	160.	200.	140.	140.	130.
Ks	13.	7.3	9.4	7.5	9.9	6.6	7.	6.4
κ_c	1.2		0.87			measured	directly	

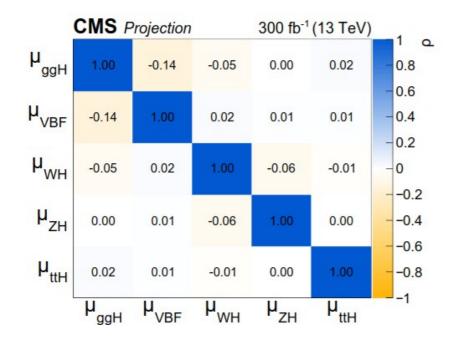
Di-Higgs: cubic self-coupling

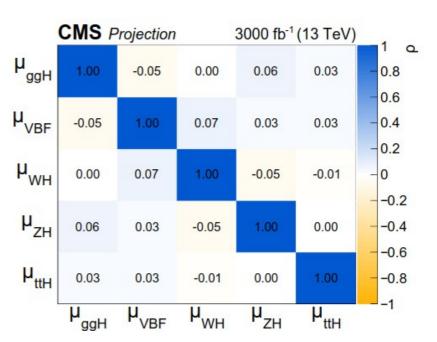
from arXiv:1905.03764

Conclusions

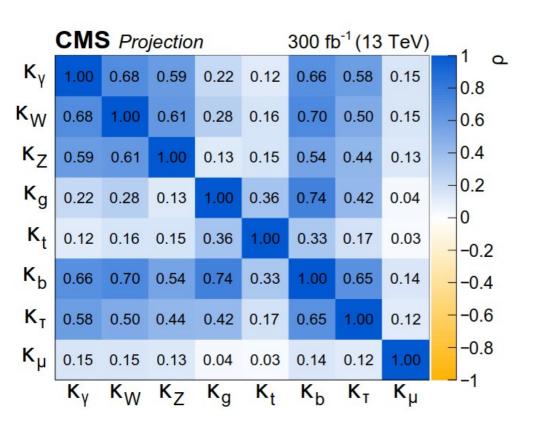

- CMS on track to provide coherent view on Higgs perspectives during the lifetime of the experiment
- Capitalized on Run-II experience
 - What are the critical areas?
 - Where will theory uncert. hit us the most?
 - Cross-collaboration dialogue with theory community fundamental
 - Positive message: in some way, we are always pessimistic
 - Difficult to account for new ideas

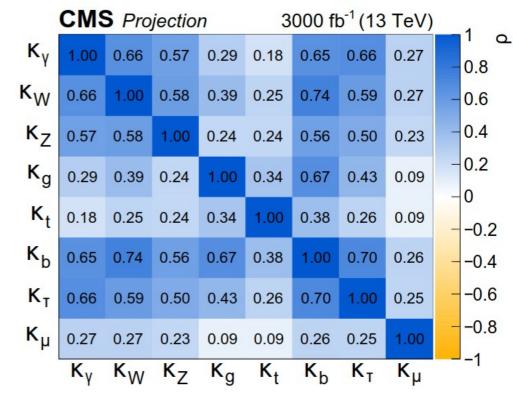

Single-Higgs physics will see it's natural conclusion at LHC with a 3 ab-1 dataset


Double-Higgs physics will require a new project...!


Backup

Signal strength correlations





Couplings correlations

Couplings: uncertainties breakdown

			300 fb	⁻¹ uncerta	ainty [%]		3000 fb ⁻¹ uncertainty [%]					
		Total	Stat	SigTh	BkgTh	Exp	Total	Stat	SigTh	BkgTh	Exp	
					B _{BSM}	= 0						
r.	S1	5.5	3.5	2.0	1.8	3.3	2.9	1.1	1.8	1.0	1.7	
κ_{γ}	S2	4.4	3.5	1.1	1.2	2.2	2.0	1.1	0.9	0.8	1.2	
$\kappa_{ m W}$	S1	4.9	3.3	1.8	2.0	2.5	2.6	1.0	1.7	1.1	1.1	
κW	S2	4.2	3.3	1.0	1.3	2.0	1.8	1.0	0.9	0.8	0.8	
κ_{Z}	S1	4.6	3.2	1.9	1.7	2.0	2.4	1.0	1.7	0.9	0.9	
κZ	S2	3.9	3.2	1.0	1.1	1.7	1.7	1.0	0.9	0.7	0.7	
v	S1	6.3	3.3	3.6	2.5	3.0	4.0	1.1	3.4	1.3	1.2	
$\kappa_{\rm g}$	S2	5.0	3.3	1.9	2.0	2.5	2.5	1.1	1.7	1.1	1.0	
ν.	S1	8.0	3.1	4.3	4.6	3.8	5.5	1.0	4.4	2.7	1.6	
Λt	S2	6.0	3.1	2.2	3.5	3.0	3.5	1.0	2.2	2.1	1.2	
10	S1	10.5	6.2	3.9	5.2	5.4	6.0	2.0	4.3	2.9	2.3	
νЬ	S2	8.8	6.2	1.9	4.0	4.5	4.0	2.0	2.0	2.2	1.8	
к_	S1	6.0	3.8	2.6	1.9	3.3	2.8	1.2	1.8	1.1	1.4	
$\kappa_{ m t}$ $\kappa_{ m b}$	S2	5.2	3.8	1.7	1.4	2.8	2.0	1.2	1.0	0.9	1.0	
К.,	S1	22.3	21.7	2.7	1.8	3.6	6.7	4.7	2.5	1.0	3.9	
κ_{μ}	S2	21.8	21.7	1.4	1.4	1.8	5.0	4.7	1.3	0.8	1.1	
]	$B_{BSM} \geq 0$,	$ \kappa_{\rm V} \leq 1$						
B_{BSM} (+1 σ)	S1	8.2	6.0	2.7	3.1	3.7	3.8	1.9	2.4	1.5	1.7	
~DSIVI (TIV)	S2	7.2	6.0	1.5	2.3	3.1	2.7	1.9	1.0	1.2	1.3	
$\Gamma/\Gamma_{ m SM}$	S1	12.7	8.6	4.1	4.8	6.7	5.8	2.7	3.6	2.4	2.7	
1 / 1 SM	S2	11.2	8.6	2.3	3.9	5.5	4.3	2.7	1.9	1.8	2.1	