Cross section measurements of Higgs-> WW*->evµv in ATLAS

National Tsing Hua University

31th July 2019

2019 Meeting of the Division of Particles & Fields of American Physical Society

Motivation

- ► HWW: 2nd Highest branching ratio at 125 GeV
 - H->WW 22% (H->bb 57%, H->ττ 6.2%, H->ZZ
 2.8%, H->γγ 0.23%)
 - One of the most sensitive channel in Run 1
- Leading Higgs production modes: ggF and VBF
- ➤ Higgs WW in Run 1, 7-8 TeV data
 - > $5.8\sigma; \sigma_{ggf} = 4.6 \pm 1.2 \text{ pb}$
 - > $3.2\sigma; \sigma_{vbf} = 0.51 \pm 0.20 \text{ pb}$

Analysis strategy

- LHC run2 2015-2016 13 TeV data (36/fb)
 - > 8->13 TeV : GGF/VBF factor of 2.3/2.4; ww : ~ factor of 1.9; $t\bar{t}$: ~ factor of 3.4
- > WW leptonic decay to different flavour : e, μ
 - Largely reduced Z+jets contribution
 - Best sensitivity among WW decays
- Single and dilepton Triggers : down to 14 GeV for muon and 17 GeV for electron
- Events separated to jet multiplicity bins: ggF 0 jet, ggF 1 jet, VBF(>=2 jet)
 - Different background contributions. Different background estimation methods used
 - > Universal jet p_T equal to 30 GeV
 - Better comparison to theory prediction
 - Easier combination with other channels
 - More Top background in 0 jet category compare to a lower p_T jets used in veto
- Use m_T instead of m_H for the presence of missing E_T

$$m_{\rm T} = \sqrt{\left(E_{ll} + E_{\rm T}^{miss}\right)^2 - \left|p_{ll} + E_{\rm T}^{miss}\right|^2}$$

ggF 0, 1 jet analysis

Signal selections

- > Spin 0 Higgs decay and W boson V-A topology : $M_{\parallel} < 55$ GeV, $\Delta \Phi_{\parallel} < 1.8$
- Background rejection 0,1 jet category:
 - \circ b jet veto in both 0,1 jet category
 - MET_{track} > 20 GeV; $\Delta \Phi$ (II,met)>1.57; max(mT_w)> 50 GeV; p_TII> 30GeV; veto m_{TT}

Background in ggF signal region

July 31, 2019

WW and Z+jet background estimations

Normalisation constrained by the control region. Simultaneous fit of all the ggF and VBF SRs and CRs

WW 0 jet control region

- Othognal mll (55 GeV < mll < 110 GeV)
- loosen $\Delta \phi_{\parallel}(<2.6)$
- Purity: 63%

 $qq \rightarrow WW$ and WW scale ~ 6% GeV 18000 Data Uncertainty Data ATLAS H_{aaF} $H_{\rm VBF}$ H_{aaF} $H_{\rm VBF}$ 16000 $H \rightarrow WW^* \rightarrow ev\mu v, N_{iet} = 0$ tt/W ww tt/Wt ww Events / $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ 14000 Z/γ Mis-Id Z/γÎ Mis-Id 12000 10000F 8000F

Z/γ^* ->TT 0 jet control region

- Flip $\Delta \phi ll$ (>2.8)
- Loosen mll (< 80 GeV)
- purity: 90%

Top background estimations

ATLAS EXPERIMENT

- Top background can have different flavor in final state
 - High production cross section
 - > Enrich low $p_T QCD$ radiated jets
- \blacktriangleright Rise the jet p_T threshold from 25 to 30 GeV for theory comparison
 - More top background in signal region
 - Event with 25-30 GeV jets now in ggF 0 jet
 - Veto events with 20-30 GeV bjet
- Top control region for top background estimation btackground estimation
 - ➤ Required one 20-30 GeV b tag jet
 - > 81% purity

Yun- Ju Lu

Misidentified Leptons

- Jets reconstructed as isolated lepton (e,µ) : W+jets dominate (Not well modeled in simulation)
- Data driven estimation via W+jet control region (id+anti-id)
- ► Fake factor estimated with Z+jets enrich region
 - > 3 reconstructed leptons
 - > A lepton pair close to Z mass window
 - > The left lepton for measuring fake factor

VBF analysis

Higgs decay products

O

η

> $\Delta \phi_{\parallel}, m_{\parallel}, mT, \Delta y_{jj}, m_{jj}, \Sigma m jl, lep \eta centrality pTtot$

Yun- Ju Lu

Background in VBF signal region

VBF signal region

Top and Z+jet background estimations

Normalisation constrained by the control region. Simultaneous fit of all the ggF and VBF SRs and CRs

- bjet veto -> 1 bjet
- Purity: 96%

- Select MTT 25 GeV mass window
- Purity: 74%

Combined ggF and VBF fit

- ggF 0, 1 jet categories
 - Split SR in mll (WW), pT sub-lead lep, and flavour channels eµ/µe (mis-id leptons)
 - 8/6 bin MT distributions
- ► VBF
 - Statistical dominated
 - Single 4 Bin BDT distribution

Events / bir

2500

2000

1500

1000

500

ATLAS

[-1, 0.26]

 $H \rightarrow WW^* \rightarrow ev\mu v, N_{jet} \ge 2 \text{ VBF}$

[0.26,0.61]

√s = 13 TeV, 36.1 fb⁻¹

Higgs_{VBF}:42+-16

Higgs_{ggF}:28+-16

🕂 Data

H_{VBF}

tt/Wt

Z/γ* VV

150

100

50

[0.61,0.86]

Events/bin

W Uncertainty

 H_{qqF}

WW

Mis-Id

Systematics

► ggF

- > WW theory uncertainties (gg->ww)
- > Pile up modeling , btag
- mis-identified lepton(flavour composition)

► VBF

- MC Statistics
- ggF, WW theory uncertainties(generator, PSUE)

Source	$\Delta \sigma_{\rm ggF} \cdot \mathcal{B}_{H \to WW^*} \ [\%]$	$\Delta \sigma_{\rm VBF} \cdot \mathcal{B}_{H \to WW^*} \ [\%]$
Data statistics	10	46
CR statistics	7	9
MC statistics	6	21
Theoretical uncertainties	10	19
ggF signal	5	13
VBF signal	<1	4
WW	6	12
Top-quark	5	5
Experimental uncertainties	8	9
b-tagging	4	6
Modelling of pile-up	5	2
Jet	2	2
Lepton	3	<u><1</u>
Misidentified leptons	6	9
Luminosity	3	3
TOTAL	18	57

Results

Signal strength (σ/σ_{SM})

 $\mu_{ggF} = 1.10^{+0.10}_{-0.09}(stat.)^{+0.13}_{-0.11}(theo syst.)^{+0.14}_{-0.13}(exp syst.)$

 $\mu_{\text{VBF}} = 0.62^{+0.29}_{-0.27}(\text{stat.})^{+0.12}_{-0.13}(\text{theo syst.}) \pm 0.15(\text{exp syst.})$

- Observed (expected)significances
 - > ggF :6.0(5.3) σ
 - ➤ VBF:1.8(2.6) σ

Higgs decay combination (ATLAS)

ATLAS-CONF-2018-031

Observed +-1o ATLAS Preliminary Stat. uncertainty \sqrt{s} = 13 TeV, 36.1 - 79.8 fb⁻¹ Syst. uncertainty $m_H = 125.09 \text{ GeV}, |y_H| < 2.5$ SM prediction YY ZZ ggF WW ττ comb. YY ZZ VBF WW ττ comb. YY ZZ VH bb comb. YY VV $ttH+tH \tau \tau$ bb comb. -1 -0.5 0 0.5 1.5 2 2.5 з 3.5 4 $\sigma \times B$ normalized to SM value

VBF observed/expected Significance:6.50/5.30

With only ATLAS data

Yun- Ju Lu

Outlook

Full ~ 139/fb of data

- > ggF analysis is systematic dominated, VBF is statistical dominated
- Increasing data -> larger gain for VBF analysis

WW uncertainties

- Better control of WW background with the MT2 variable in ggF 1 jet and VBF analysis
- WW theory uncertainties
 - Largest background in the ggF 0 jet category. Uncertainty from gg->WW (NLO calculation)
 - VBF category : WW generator uncertainties
- Pile up increasing (<µ> 2016: 25.1, 2017: 37.8, 2018:36.1)
 - > Pile up in isolation, Pile up jet rejection.
- Particle flow jets and btag improvements
- Goal for full run 2
 - > 2 jet category : ggF 2 jet, VH analysis
 - STXS, standard Fiducial Cross Section measurement =>Channel combinations=> Interpretations
 - Differential Cross Section measurement => Interpretations
 - * Interpretations: kappa framework, SMEFT fit, BSM models

Yun- Ju Lu

Thank you !

Back up

Signal region selection

Event selection criteria used to define the signal regions in the $H \rightarrow WW^* \rightarrow e\nu\mu\nu$ analysis. For the $N_{jet} \ge 2$ VBF signal region, the input variables used for the boosted decision tree (BDT) training are also reported.

Category	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \geq 2 \text{ VBF}$
Preselection	Two isolated, different-flavour leptons ($\ell = e, \mu$) with opposite charge $p_T^{\text{lead}} > 22 \text{ GeV}, p_T^{\text{sublead}} > 15 \text{ GeV}$ $m_{\ell\ell} > 10 \text{ GeV}$ $p_T^{\text{miss}} > 20 \text{ GeV}$		
Background rejection	$\begin{array}{c c} & & N_{b\text{-jet},(p_{T}>20 \text{ GeV})} = 0 \\ \Delta \phi(\ell\ell, E_{T}^{\text{miss}}) > \pi/2 & & max \left(m_{T}^{\ell}\right) > 50 \text{ GeV} & \\ p_{T}^{\ell\ell} > 30 \text{ GeV} & & m_{\tau\tau} < m_{Z} - 25 \text{ GeV} \end{array}$		
$H \rightarrow W W^* \rightarrow e v \mu v$ topology	$m_{\ell\ell}$ < 55 GeV $\Delta\phi_{\ell\ell}$ < 1.8		central jet veto outside lepton veto
Discriminant variable BDT input variables	$m_{ m T}$		BDT $m_{jj}, \Delta y_{jj}, m_{\ell\ell}, \Delta \phi_{\ell\ell}, m_{\rm T}, \sum_{\ell} C_{\ell}, \sum_{\ell,j} m_{\ell j}, p_{\rm T}^{\rm tot}$

Control region selection

Table 3

Event selection criteria used to define the control regions. Every control region selection starts from the selection labelled "Preselection" in Table 2. $N_{b-jet,(20 \text{ GeV} < p_T < 30 \text{ GeV})}$ represents the number of *b*-jets with 20 GeV < p_T < 30 GeV.

CR	$N_{\text{jet},(p_T>30 \text{ GeV})} = 0 \text{ ggF}$	$N_{\text{jet},(p_T>30 \text{ GeV})} = 1 \text{ ggF}$	$N_{\text{jet},(p_{\text{T}}>30 \text{ GeV})} \geq 2 \text{ VBF}$
WW	$55 < m_{\ell\ell} < 110 \text{ GeV}$ $\Delta \phi_{\ell\ell} < 2.6$ $N_{b-\text{jet},(p_T>)}$	$m_{\ell\ell} > 80 \; ext{GeV}$ $ m_{ au au} - m_Z > 25 \; ext{GeV}$ $20 \; ext{GeV} = 0$ $\max\left(m_{ ext{T}}^\ell\right) > 50 \; ext{GeV}$	
tī/Wt	$\begin{split} N_{b\text{-jet},(20 \text{ GeV} < p_{\text{T}} < 30 \text{ GeV})} > 0 \\ \Delta \phi (\ell \ell, E_{\text{T}}^{\text{miss}}) > \pi / 2 \\ p_{\text{T}}^{\ell \ell} > 30 \text{ GeV} \\ \Delta \phi_{\ell \ell} < 2.8 \end{split}$	$N_{b\text{-jet},(p_{T}>30 \text{ GeV})} = 1$ $N_{b\text{-jet},(20 \text{ GeV} < p_{T}<30 \text{ GeV})} = 0$ $\max(m_{T}^{\ell}) > 50 \text{ GeV}$ $m_{\tau\tau} < m_{Z} - m_{T}$	$N_{b-jet,(p_T>20 \text{ GeV})} = 1$ central jet veto - 25 GeV outside lepton veto
Ζ/γ*	$N_{b-\text{jet},(p_T>20 \text{ GeV})} = 0$ $m_{\ell\ell} < 80 \text{ GeV}$ no p_T^{miss} requirement $\Delta \phi_{\ell\ell} > 2.8$ $m_{\tau\tau} > m_Z - 25 \text{ GeV}$		central jet veto outside lepton veto $ m_{\tau\tau} - m_Z \le 25$ GeV

VBF uncertainties

Yun- Ju Lu

Z+jet control region

Fake Factor

Double fakes and trigger by fake

Double fake

- Events with double fake is counted twice in fake estimation eq in slide 8
- Subtract the double count
 - \circ N_{QCD}(anti-ID anti-ID) * fe * fµ

$$\begin{split} N_{id,id}^{QCD\ corr} &= N_{e,\mu}^{QCD} \cdot f^{QCD} \\ &= (N_{e,\mu}^{data} - N_{e,\mu}^{EW\ MC}) \cdot (-f_{\mu}^{Z} f_{e}^{Z}) \\ &= N_{e,\mu}^{QCD} \cdot (-f_{\mu}^{Z} f_{e}^{Z}) \end{split}$$

- \succ More double fake in (eµ) event and higher jet multiplicity bin
 - Small effect on ggF analysis
 - $\circ~$ Effect of double fakes ~ 25% for VBF eµ categories
- Trigger by fake (trigger selection tighter than anti-ID lepton)
 - Measured in Dijet enrich sample (signal lepton + jet), requiring trigger selection in the fake factor measurement.
 - > More in event with leading leptons are fake
 - > More in muon trigger by fakes for each categories $\sim 15\%$
 - ➤ Leading Electron trigger by fakes are ~5%

July 31, 2019

Yun- Ju Lu

500 -----ATLAS

VBF post-fit

+ Data

W Uncertainty

Events / 10 GeV

Uncertainty

🕂 Data

3

 $\Delta \phi_{\parallel}$