Search for SM $tq\gamma$ production in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment

Harish Potti

The University of Texas at Austin

Aug 01, 2019

APS Division of Particles & Fields meeting, Boston, 2019

Harish Potti

Outline

Introduction

Signal MC production

Data/MC comparison in pre-selection region

Estimation of $e \rightarrow \gamma$ fakes

Summary

Motivation

- Measurement of *σ*(*tqγ*) provides an important precision test for the SM
- It is sensitive to
 - ► top quark's interaction with photon and W[±] bosons
 - top quark charge and its electric and magnetic dipole moments

- This process not been observed yet
- ► Final state contains: exactly 1ℓ, 1γ, 1 forward jet, 1 b-jet and MET> 30 GeV
- ► Note: This analysis is different from FCNC $tq\gamma$ analysis which probes $t \rightarrow q\gamma$ interaction

Recent results from CMS

- ► CMS collaboration recently published a paper showing evidence for this process with 36 fb⁻¹ of data collected in 2015-16 Phys. Rev. Lett. 121, 221802 (2018)
- Only considered single μ events
- Observed (expected) significance 4.4σ (3.0 σ)
- Fiducial product of cross-section and branching ratio obtained:

 $\sigma(pp \rightarrow t\gamma j)\mathcal{B}(t \rightarrow \mu\nu b) = 115 \pm 17(\text{stat})\pm 30(\text{syst}) \text{ fb in the phase space } p_{T,\gamma} > 27 \text{ GeV}, |\eta_{\gamma}| < 1.44 \text{ and } \Delta R(X,\gamma) > 0.5 \text{ for } X \in (\mu, j, b)$

ATLAS search for $tq\gamma$ production

- ATLAS collaboration has started a search for this process with 139 fb⁻¹ of data collected during the Run-2 data taking period
- ► Single electron events are also included in addition to single µ events
- This analysis is still in progress. In today's talk, I will give you a brief overview about following topics
 - Signal MC production
 - ► Data/MC comparisons in pre-selection region
 - Estimation of $e \rightarrow \gamma$ fakes

Introduction

Signal MC production

Data/MC comparison in pre-selection region

Estimation of $e \rightarrow \gamma$ fakes

Summary

$tq\gamma$ MC production

- *tqγ* MC sample has been produced with MADGRAPH5+PYTHIA8 at LO
- 4-flavour scheme is used (i.e., parton distribution functions for b-quarks is set to zero) as it provides a good modelling of event kinematics
- Photon radiation from top quark daughters has been included
- Generator level selection cuts:
 - $\Delta \mathbf{R}(\gamma, \mathbf{X}) > 0.2 \ \forall \ \mathbf{X} \in (\ell, b, j)$
 - Photon $p_T > 10 \text{ GeV}$
 - $|\eta_{(\ell, \gamma)}| < 5.0$
- Cross-section obtained from the generator = 1.389 pb

Introduction

Signal MC production

Data/MC comparison in pre-selection region

Estimation of $e \rightarrow \gamma$ fakes

Summary

Signal & background plots

Data/MC comparisons in a loose pre-selection region are presented in next two slides: Pre-selection region definition:

- Exactly one tight, isolated ℓ (=e, μ) with p_T > 27 GeV
- Exactly one tight, isolated photon with $p_T > 20 \text{ GeV}$
- number of jets ≥ 1
- Exactly 1 b-tagged jet passing 85% efficiency working point of the b-tagging algorithm
- Missing $p_T > 30 \text{ GeV}$
- ► Z-veto: $M(e\gamma) \notin (80, 100)$ GeV

Composition of pre-selection region

Major backgrounds:

- Prompt photon backgrounds: $tt\gamma$, $W\gamma$, $Z\gamma$
- Events with fake photons ($t\bar{t}$, Z+jets etc.)

Figure: (a)Left: Signal and background composition (b)Right: Photon type composition in the pre-selection region

Harish Potti

SM $tq\gamma$ production

Aug 01, 2019 10 / 20

Pre-selection region plots

In general, data is 25% higher than MC estimates. This could be due to mismodelling of events with fake photons/leptons in the simulation.

Pre-selection region plots-2

SM $tq\gamma$ production

Introduction

Signal MC production

Data/MC comparison in pre-selection region

Estimation of $e \rightarrow \gamma$ fakes

Summary

Electron to Photon fakes

► Electrons and photons are reconstructed very similarly in ATLAS ⇒ an electron faking a photon may happen

- Based on the # tracks matching to the cluster, photons are reconstructed either as converted or as unconverted
- ► Rate of an electron faking as photon is ~ 9%
- Simulation does not model these fakes well. Scale factors derived to correct simulation for any deviation from data

Harish Potti

Z + jets Control Regions

Two control regions enriched with Z+jets are used for estimating $e \rightarrow \gamma$ scale factors

- $Z \rightarrow ee$: Events with two reconstructed electrons
- ► Z → e(e → γ): Events with one reconstructed electron and one reconstructed photon. Reconstructed photon in the event is assumed to-be a misreconstructed electron

Object	$Z \rightarrow ee$	$Z \to e(e \to \gamma)$
Photons	$=0 \text{ w} / p_T > 20 \text{ GeV}$	$=1 \text{ w} / p_T > 20 \text{ GeV}$
Electrons	=2 (SFOS) w/ p_T >27 GeV	$=1 \text{ w} / p_T > 27 \text{ GeV}$
missing p_T	< 30 GeV	< 30 GeV
M(ee)	[70, 110] GeV	-
$M(e\gamma)$	-	[70, 110] GeV

Scale Factor calculation with Template Fit method

- For Z → eγ process, template shape is obtained from MC simulation. Normalization is floated during the fit to the data
- For major bkgs (Wγ & Zγ), shape and normalization of M(eγ) distribution are taken from the MC
- ► For other bkgs (VV, W+jets, γ+jets) ⇒ 3rd order Bernstein polynomials are used

Scale factor =
$$\frac{N_{sig}^{\text{Data}}(Z \to e\gamma) / N_{sig}^{\text{MC}}(Z \to e\gamma)}{\mu_{Zee}}$$

Where,
$$\mu_{Zee} = \frac{N_{sig}^{\text{Data}}(Z \to e^+e^-)}{N_{sig}^{\text{MC}}(Z \to e^+e^-)}$$

Harish Potti

μ_{Zee} calculation

 M(ee) distribution for Z → ee region is shown here before (left) and after(right) fitting to data

$$\mu_{Zee} = N_{sig}^{\text{Data}}(Z \to e^+e^-) / N_{sig}^{\text{MC}}(Z \to e^+e^-) = 1.03 \pm 0.00026$$

Harish Potti

Fit to data in $Ze\gamma$ region

 M(eγ) distribution for Z → eγ region is shown here before (left) and after(right) fitting to data
N^{Data}_{sig}(Z → eγ) / N^{MC}_{sig}(Z → eγ) = 1.10 ± 0.0014

Harish Potti

SM $tq\gamma$ production

Aug 01, 2019 18 / 20

SF plot in bins of photon η and CT

Scale factor has been calculated in bins of η_γ and photon conversion type

Aug 01, 2019 19 / 20

- Measurement of *tqγ* cross-section provides an important precision test for Standard Model.
- ► ATLAS collaboration has started search for this process with the full Run-2 data (139 fb⁻¹)
- In the current talk, I have summarized the signal MC production and $e \rightarrow \gamma$ fake estimation method
- Work in Progress: Fake lepton estimation, Neural Network for separating signal and backgrounds and Profile likelihood fit to data to get *tqγ* Cross-section