Search for Heavy, Long-Lived Particles Decaying to Lepton Pairs in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

K.K. Gan
The Ohio State University
On behalf of ATLAS Collaboration

July 31, 2019

arXiv:1907.10037 [hep-ex]
Outline

- Introduction
- Long-Lived Particles Reconstruction/Selection
- Background Estimates
- Systematic Uncertainties
- Summary
New Particle Search Signatures

- No new BSM particles at LHC so far
 \(\Rightarrow \) searches for long-lived particles are of particular interest
- Two long-lived particles decaying into two leptons are searched for
 - \(Z' \rightarrow ee + \mu\mu + e\mu \)
 - cannot be singly produced via \(q\bar{q} \) or else would have been observed as displaced jets
 - can be produced in pairs or from a decay
 - SUSY RPV simplified model

K.K. Gan
The Ohio State University
DPF2019
LLP Signatures

This search

- displaced multitrack vertices
- displaced leptons, lepton-jets, or lepton pairs
- multitrack vertices in the muon spectrometer
- disappearing or kinked tracks
- non-pointing (converted) photons
- emerging jets
- trackless, low-EMF jets
- quasi-stable charged particles
Challenge in LLP Search

- Standard ATLAS trigger + track/vertex reconstruction are designed for particles originated near pp collision region
 - need special triggers without using inner tracker information
 - loose enough without producing too much data
 - use muon spectrum information only to select muons
 - use photon trigger only to select electrons
 - need to recover tracks not originated near pp collision region
 - use hits not used by the standard tracking
 - need special reprocessing: run large radius tracking program
 - $2 < |d_0| < 300$ mm
 - $|z_0| < 1500$ mm
Background

- no standard model process can produce heavy lepton pair with detached vertex
- two potential backgrounds
 - cosmic ray
 - two random leptons forming a detached vertex
Cosmic Ray Veto

- one segment of cosmic ray could be reconstructed in opposite direction
 - two opposite signed track forming a detached vertex
 - two tracks separated in ϕ by π
 - two tracks of opposite η
 - CR veto: $\Delta R_{\text{cos}} = \sqrt{(\Delta \phi - \pi)^2 + (\Sigma \eta)^2} < 0.01$
Cosmic Background Estimate

- use cosmic veto distribution to estimate background
- use distribution without vertex requirement to increase statistics in predicting number of cosmic events in signal region (> 0.01)

$0.27 \pm 0.14 \pm 0.10$ vertices
Random Crossing Background

- estimated from data using two techniques
- no assumption on lepton origin or fake rate
 - event mixing
 - calculate probability for forming detached vertex using leptons from different events
 - multiple this by number of lepton pairs in data to yield number of vertices from random crossing
 - track flipping
 - randomly flip one track in a lepton pair with respect to beam spot
 - try to reconstruct the vertex
 - number of successfully reconstructed vertex is then the estimated background
- both methods over estimate non-leptonic vertices (xx) by 20%
Summary of Background

- event mixing: 0.0024 vertices
- track flipping: 0.0039 vertices
 - difference of 63% is assigned as systematic uncertainty
 - 0.0024 ± 0.0005 ± 0.0015 vertices

- cosmic ray: 0.27 ± 0.14 ± 0.10 vertices
Systematic Uncertainty

- SUSY production cross section:
 - 8.7% for 700 GeV squark
 - 17.8% for 1600 GeV squark
- luminosity: 2.2%
- pile-up reweighting: ~10%
 - reweighted MC events to reproduce observed number of primary vertices
- trigger: few %
 - using Z boson with tag-and-probe technique
- tracking and vertexing efficiency for LLP: 10%
 - use $K_s \rightarrow \pi\pi$
Sensitivity for Z'

- Efficiency $\sim 10\%$ to radius of 300 mm
- Good sensitivity for Z' mass above 250 GeV
- Present efficiency vs. radius and p_T for theorists to extract limits on their favorite models
Results on RPV SUSY

- Two independent scenarios searched:
 - LSP decay is mediated by single dominant RPV coupling λ_{121} or λ_{122}
 - 700 GeV squark: exclude 50-500 GeV neutralino, $c\tau = 1$ mm – 6 m
 - 1.6 TeV squark: exclude 1.3 TeV neutralino, $c\tau = 3$ mm – 1 m

ATLAS

$q\bar{q} \rightarrow q[\chi^0, e\nu / e\mu \nu]$
\(\sqrt{s} = 13 \text{ TeV, 32.8 fb}^{-1} \)

Upper limit on cross-section [fb]

All limits at 95% CL

$\sigma(pp \rightarrow q\bar{q}), m(\bar{q}) = 700 \text{ GeV}$

$\sigma(pp \rightarrow q\bar{q}), m(\bar{q}) = 1600 \text{ GeV}$
Summary

- Search for heavy, long-lived particles with two lepton final states in two search scenarios
 - $Z' \rightarrow ee + \mu\mu + e\mu$
 - SUSY RPV simplified model
 - no event was found in the data
 - exclude some neutralino masses and lifetimes