Search for chargino-neutralino production using an emulated recursive jigsaw reconstruction technique with the ATLAS detector

> Elodie Resseguie University of Pennsylvania

> > DPF 2019 August 1, 2019

Open questions of the Standard Model

- The Standard Model (SM) has been successful at the LHC
- However there are questions that remain unanswered
 - What is Dark Matter?
 - Why is the Higgs mass so light?
 - Quadratic divergences in the corrections of the Higgs mass

Supersymmetry as a proposed solution

- **Symmetry** between the bosons and the fermions
 - Partner particles to the SM particles with half spin difference
- Fine tuning: opposite sign loop corrections to cancel quadratic divergence

- Dark matter: if R-parity where baryon lepton numbers (B-L) conserved
 - Lightest SUSY particle (LSP) is **stable** -> candidate for dark matter!

SUSY production cross sections

Squark and gluinos have the largest cross section But... strong SUSY tightly constrained using simplified models

E. Resseguie (UPenn)

What's next?

Electroweak (EWK) production of SUSY next natural place to look! This can lead to signatures with multiple leptons and missing energy

E. Resseguie (UPenn)

Model considered: direct Wino production

| M1 | < | M2 | << | µ |

- Larger cross-section than other EWK production
- Can give correct Dark Matter Relic abundance
- Simplified models make the following assumptions:
 - No mixing between SUSY mass parameters
 - 100% branching fraction from sparticle to particle

Diagram for search discussed

Production of charginos and neutralinos decaying via on-shell W and Z to 3 leptons and missing energy

- Search strategy:
 - 1 same flavor, opposite charge pair of leptons with invariant mass consistent with the Z-mass
 - 2 orthogonal signal regions: jet veto, region with at least one jet (ISR)
- Background estimation:
 - WZ (dominant) and top backgrounds estimated with a control region
 - Z+jets and Z+ γ where jet/ γ fake a lepton estimated using a data-driven method

Motivation

- Two independent efforts pursued with 2015+2016 data
 - cut-and-count and Recursive Jigsaw (RJR)
- RJR saw excesses in two orthogonal bins targeting models with $\Delta m \sim m(Z)$
 - cut-and-count analysis did not see these excesses

Motivation for search

- Excess in two orthogonal bins in search using: jet veto and ISR
- Developed new analysis technique: emulated RJR (eRJR)
 - Explore the intersection between the conventional and RJR analyses
 - Reproduce the RJR technique using simplified, lab frame variables
- Expand the analysis to include the full Run 2 dataset (139 fb⁻¹)

E. Resseguie (UPenn)

Overview of RJR technique

- RJR technique separates event into a tree
- Two types of objects are present:
 - Visible: 3 leptons
 - Invisible: 2 neutralinos and 1 neutrino
- Use iterative mass minimization
 - Assign objects to each frame
 - Unknowns associated with invisible objects:
 - Mass of the invisible particles
 - Longitudinal momenta
 - How they contribute to total missing energy
- Boost back to each frame
- Calculate kinematic variables in each frame

arXiv:1705.10733 arXiv:1806.02293

Overview of eRJR technique

- Translate RJR variables into lab frame variables with minimal assumptions
- Difference in assumptions:
 - In eRJR, mass of the invisible system is 0, no splitting of the invisible system
 - In eRJR, all signal jets are part of the ISR system while in RJR, ISR jets selected to boost against the leptons and missing energy frame
- For example

$$p_T^I \leftrightarrow E_T^{miss}$$

 p_T^I = transverse momentum of the invisible particles

$$\frac{p_T^{PP}}{p_T^{PP} + HT_{3,1}^{PP}} \leftrightarrow \frac{p_T^{\text{SOft}}}{p_T^{\text{SOft}} + m_{\text{eff}}^{3\ell}}$$

 p_T^{PP} = vector sum of transverse momenta of all objects in sparticle-sparticle frame (PP)

$$HT_{n,m}^{F} = \sum_{i=1}^{n} |\overrightarrow{p}_{T \text{ VIS},i}^{F}| + \sum_{j=1}^{m} |\overrightarrow{p}_{T \text{ INV},j}^{F}|$$

 $p_T^{soft}, m_{eff}^{3\ell}$ = respectively vectorial and scalar sum of transverse momenta of the 3 leptons and missing energy

Correlating RJR and eRJR

- Distributions are event-by-event comparison of RJR and eRJR variables
- Good correlation between RJR and eRJR mimic variables
- eRJR replicates well the RJR analysis with minimal assumptions!

Background modeling for eRJR search

GeV Events / 25 GeV ATLAS Preliminary ATLAS Preliminary • Data Here Total SM Data Here Total SM 10⁴ WZ ZZ WZ ΖZ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ √s = 13 TeV, 139 fb⁻¹ 10³ Events / 5 Fake/non-prompt Fake/non-prompt Others Others VR-ISR small $R(E_{\tau}^{miss}, jets)$ **VR-low** 10³ Top-quark like Top-quark like 10² $m(\widetilde{\chi}_{0}^{0}/\widetilde{\chi}_{\star}^{\pm},\widetilde{\chi}_{\star}^{0}) = (200,100) \text{ GeV}$ $m(\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{\pm},\tilde{\chi}_{1}^{0}) = (200,100) \text{ GeV}$ 10² 10 10 1 1 10- 10^{-1} Data/SM 2 2 Data/SM 0 <u>-</u> 250 0 300 500 650 350 550 0 5 10 15 400 450 600 700 20 25 H^{boost} [GeV] p_{τ}^{soft} [GeV]

VR low

VR-small R(MET, jets)

Good background modeling!

Result

No longer have significant excess!

Conclusion

- EWK SUSY is well-motivated and interesting as LHC collects more data
- Developed new technique to study RJR phase space: eRJR
 - No significant excess observed with full Run 2 dataset
 - We are currently working on the publication for this work
- Plenty of phase space left to cover, maybe SUSY could be hiding there!

SUSY summary plots

Thank you for your attention. Any questions?

Results

E. Resseguie (UPenn)

Translation of standard tree variables

Variables calculated in lab frame:

- $p_T^{soft} = (lep1 + lep2 + lep3 + MET).Pt()$
- $m_{eff^{3l}} = lep1.Pt() + lep2.Pt() + lep3.Pt() + MET.Pt()$

Variable calculated in PP frame

- $H^{boost} = Iep1.P() + Iep2.P() + Iep3.P() + MET.P()$
 - Includes full momentum of MET
 - Calculate Z-component of MET, assuming mass of invisible is 0
 - RJ mass estimation: $M_I^2 = M_V^2 4M_{Va}^2M_{Vb}^2$
 - Boost to PP frame

Note: *m_{eff}³¹ and H^{boost} are calculated in different frames*

Calculating z-component of MET and boost

- In order to emulate some RJ variables, need to boost to PP frame
- But first, need to determine z-component of MET
- Determining pZ of the invisible system described: <u>arXiv:1705.10733</u>

$$p_{I,||} = p_{V,||} \frac{\sqrt{(p_{I,\perp})^2 + m_I^2}}{\sqrt{(p_{V,\perp})^2 + m_V^2}}, p_{V,||} = (\ell_1 + \ell_2 + \ell_3).Pz(), assume: m_I = 0$$

• Boost is given by:

$$\vec{\beta}_{PP}^{\ lab} = \frac{\vec{p}_{PP}^{\ lab}}{E_{PP}^{\ lab}} = \frac{\vec{p}_{V}^{\ lab} + \vec{p}_{I}^{\ lab}}{E_{V}^{\ lab} + \sqrt{|\vec{p}_{I}^{\ lab}|^{2} + M_{I}^{2}}}, assume: M_{I} = 0$$

Translation of compressed tree variables

E. Resseguie (UPenn)

SR/CR/VR definitions

Selection Criteria									
Low-mass Region	$p_T^{\ell_1}$ [GeV]	$p_T^{\ell_2}$ [GeV]	$p_T^{\ell_3}$ [GeV]	m _T [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	H ^{boost} [GeV]	$\frac{m_{\rm eff}^{3\ell}}{H^{\rm boost}}$	$rac{p_{\mathrm{T}}^{\mathrm{soft}}}{p_{\mathrm{T}}^{\mathrm{soft}}+m_{\mathrm{eff}}^{3\ell}}$	
CR-low	> 60	> 40	> 30	€ (0,70)	> 40	> 250	> 0.75	< 0.2	
VR-low	> 60	> 40	> 30	$\in (70, 100)$	-	> 250	> 0.75	< 0.2	
SR-low	> 60	> 40	> 30	> 100	-	> 250	> 0.9	< 0.05	
ISR Region	$p_T^{\ell_1}$ [GeV]	$p_T^{\ell_2}$ [GeV]	$p_T^{\ell_3}$ [GeV]	m _T [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$ \Delta\phi\left(E_{\rm T}^{\rm miss}, {\rm jets}\right) $	$R\left(E_{\rm T}^{\rm miss}, {\rm jets}\right)$	$p_{\rm T}^{\rm jets}$ [GeV]	$p_{\rm T}^{\rm soft}$ [GeV]
CR-ISR	> 25	> 25	> 20	< 100	> 60	> 2.0	€ (0.55, 1.0)	> 80	< 25
VR-ISR	> 25	> 25	> 20	> 60	> 60	> 2.0	$\in (0.55, 1.0)$	> 80	> 25
VR-ISR-small $p_{\rm T}^{\rm soft}$	> 25	> 25	> 20	> 60	> 60	> 2.0	$\in (0.55, 1.0)$	< 80	< 25
VR-ISR-small $R(E_{\rm T}^{\rm miss}, {\rm jets})$	> 25	> 25	> 20	> 60	> 60	> 2.0	$\in (0.30, 0.55)$	> 80	< 25
SR-ISR	> 25	> 25	> 20	> 100	> 80	> 2.0	$\in (0.55, 1.0)$	> 100	< 25

• Region definitions kept as close as RJR published result

Correlating RJR and eRJR using WZ

Good correlation between RJR (y-axis) and eRJR(x-axis) variables for signal

E. Resseguie (UPenn)

Correlating RJR and eRJR using WZ

• Emulation of p_T^{soft} not as correlated due to difference in ISR jet selection

CR and VR yields

VR-low	
338	
1 ± 19	
2 ± 21	
2 ± 1.6	
3 ± 0.9	
$2^{+0.25}_{-0.02}$	
9 ± 5	
2322	

		CR-ISR	VR-ISR	VR-ISR-small $p_{\rm T}^{\rm soft}$	VR-ISR-small $R\left(E_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets}\right)$
	Observed events	442	101	72	252
ISR regions	Fitted SM events	442 ± 21	107 ± 18	94 ± 7	256 ± 14
	WZ	411 ± 22	97 ± 17	88 ± 7	242 ± 13
	ZZ	9.1 ± 0.8	2.1 ± 0.5	2.6 ± 0.4	2.7 ± 0.5
	Others	9 ± 5	4.8 ± 2.5	1.8 ± 1.1	5.0 ± 2.5
	Top-quark like	4.8 ± 1.6	2.7 ± 1.1	1.5 ± 1.1	2.0 ± 1.0
	Fake/non-prompt leptons	9 ± 5	$0.01\substack{+0.18 \\ -0.01}$	$0.5^{+1.5}_{-0.5}$	3.7 ± 3.4

• WZ NF is 0.84 ± 0.07 for low-mass regions, 0.94 ± 0.05 for ISR regions

E. Resseguie (UPenn)

SR low distributions

E. Resseguie (UPenn)

SR ISR distributions

- Slight excess in SR ISR, which does not appear to match the signal model
- E. Resseguie (UPenn)

Control Region distributions

CR low

Good background modeling

Background modeling for eRJR search

E. Resseguie (UPenn)

Result

No longer have significant excess! •

CP Systematics

- Jet: jet energy scale and resolution
- Electron and Muon
 - Momentum scale and resolution, uncertainties on scale factors
- missing energy:
 - propagation of uncertainties on p_T of objects
 - uncertainties on resolution of track-based soft term
- Luminosity: uncertainty for combined 2015-18 is 1.7%

Uncertainty in signal regions	SR-low	SR-ISR
Jet energy scale and resolution	7.0%	6.8%
WZ Normalization	6.6%	4.6%
$E_{\mathrm{T}}^{\mathrm{miss}}$	3.3%	2.6%
MC Statistics	2.9%	4.0%
Anti-ID CR Stats	2.7%	0.22%
WZ Theory	1.9%	1.3%
30% uncertainty on other backgrounds	1.4%	2.7%
Fake factor estimation	1.1%	< 0.01%
Muon momentum scale and resolution	0.37%	0.04%
Electron energy scale and resolution	0.24%	0.30%
Pileup	0.17%	0.96%
Top-quark like background estimation	0.02%	1.4%
Flavor Tagging	0.02%	0.39%

E. Resseguie (UPenn)